Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Feedback 8 Feedback Why Feedback? Desensitize the gain: make the value of the gain less sensitive to variations in the value of circuit components, such as might be caused by changes in temperature Reduce nonlinear distortion: make the output proportional to the input Reduce the effect of noise: minimize the contribution to the output of unwanted electric signals generated, either by the circuit components themselves, or by extraneous interference Control the input and output impedances: raise or lower the input and output impedance by the selection of an appropriate feedback topology Extend the bandwidth of the amplifier 8 Feedback 8.1 The General Feedback Structure xo Axi Af xo ? xs x f xo xi xs x f Af xo A xs 1 A 8.2 Some Properties of Negative Feedback 8.2.1 Gain Desensitivity Af xo A xs 1 A Assume is constant. Taking differentials of both sides results in A f A f Af A (1 A ) 2 1 A (1 A ) A desensitivity factor 8.2 Some Properties of Negative Feedback 8.2.2 Bandwidth Extension A( s) AM 1 s / H A( s) 1 A( s) AM /(1 AM ) Af ( s) 1 s / H (1 AM ) Af ( s) Midband Gain: AM AM 1 AM 3-dB Frequency: H H (1 AM ) 8.2 Some Properties of Negative Feedback 8.2.3 Noise Reduction Signal-to-Noise Ratio S/N Vs Vn Vo Vs A1 A2 A1 Vn 1 A1 A2 1 A1 A2 S/N Vs A2 Vn 8.2 Some Properties of Negative Feedback 8.2.3 Reduction in Nonlinear Distortion = 0.01 1000 90.0 1 1000 0.01 100 50 1 100 0.01 Open Gain: 1000 Af 1 Open Gain: 100 Af 2 8.3 The Four Basic Feedback Topologies 8.3.1 Voltage Amplifiers Mix Feedback Input: Voltage Output: Voltage Voltage-mixing voltage sampling Series - shunt feedback Sample Voltage 8.3 The Four Basic Feedback Topologies 8.3.2 Current Amplifiers Mix Feedback Input: Current Output: Current Current-mixing current sampling Shunt - series feedback Sample Current 8.3 The Four Basic Feedback Topologies 8.3.3 Transconductance Amplifiers Mix Feedback Input: Voltage Output: Current Voltage-mixing current sampling Series - series feedback Sample Current 8.3 The Four Basic Feedback Topologies 8.3.4 Transresistance Amplifiers Mix Feedback Input: Current Output: Voltage Current-mixing Voltage sampling Shunt - shunt feedback Sample Voltage 8.4 The Series-Shunt Feedback Amplifier 8.4.1 The Ideal Situation Rif ? V A Af o Vs 1 A Rof ? 8.4 The Series-Shunt Feedback Amplifier 8.4.1 The Ideal Situation (cont.) Rif Vi V f Vs Vs Vs V V AVi Ri s Ri Ri i Ri (1 A ) I s I i Vi / Ri Vi Vi Vi Z if ( s ) Z i ( s )(1 A( s ) ( s )) Series mixing 8.4 The Series-Shunt Feedback Amplifier 8.4.1 The Ideal Situation (cont.) Rof I Shunt sampling Vt Vt It I Vt AVi Vt A(V f ) Vt A( Vt ) Vt (1 A ) Ro Ro Ro Ro Rof Ro 1 A Z of ( s) Z i ( s) 1 A( s) ( s) 8.5 The Series-Series Feedback Amplifier 8.5.1 The Ideal Situation Vs V f Vi Rif I i Vi / Ri Ri I o Vi Vi Rif Ri (1 A ) Series mixing Ri AVi Vi Vi 8.5 The Series-Series Feedback Amplifier 8.5.1 The Ideal Situation (cont.) Rof V ( I t AVi ) Ro It It Ro ( I t AV f ) It Ro Rof Ro (1 A ) Series sampling ( I t AI t ) It 8.6 The Shunt-Shunt and Shunt-Series Feedback Amplifier 8.6.1 The Shunt-Shunt Configuration Rif Vi IR Ii Ii Ri i i Ri Ri I s Ii I f I i Vo I i AI i 1 A Rof Vo Vo Vo Vo Ro Ro Ro I (Vo AI i ) / Ro Vo AI f Vo AVo 1 A 8.6 The Shunt-Shunt and Shunt-Series Feedback Amplifier 8.6.3 The Shunt-Series Configuration Rif Vi IR Ii Ii Ri i i Ri Ri I s Ii I f I i I o I i AI i 1 A Rof I o AI f Vo ( I o AI i ) Ro I AI o Ro Ro o Ro (1 A ) Io Io Io Io 8.6 The Shunt-Shunt and Shunt-Series Feedback Amplifier 8.6.3 Summary Ri Rif: Mixing Voltage (series) mixing always increases the input resistance. Current (shunt) mixing always reduces it. Ro Rof: Sampling Voltage (shunt) sampling always reduces the output resistance Current (series) sampling increases it Homework: 10.1, 10.3, 10.8, 10.16, 10.24, 10.26, 10.31, 10.32