Download Compound Angle Formula

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Compound Angle Formulae
1. Addition Formulae
cos( A  B)  cos A cos B  sin A sin B
cos( A  B)  cos A cos B  sin A sin B
sin( A  B)  sin A cos B  cos A sin B
cos( A  B)  sin A cos B  cos A sin B
Example:
sin( x  30)o  sin x cos30  cos x sin 30 
3 sin x  cos x
2
2. Formulae Involving Double Angle (2A)
sin 2 A  2sin A cos A
cos 2 A  cos 2 A  sin 2 A
 2cos 2 A  1
 1  2sin 2 A
Two further formulae derived from the cos 2 A formulae.
cos 2 A  12 (1  cos 2 A)
sin 2 A  12 (1  cos 2 A)
Mixed Examples:
4
Given that A is an acute angle and tan A  , calculate sin 2 A and cos 2 A.
3
sin A 4

cos A 3
sin 2 A  cos 2 A  1
sin 2 A  ( 43 sin A)2  1
sin A  
Similarly:
sin 2 A  2sin A cos A 
cos A 
16

25
3
5
4
5
Substitute form the tan
(sin/cos) equation
+ve because A is acute
3-4-5 triangle
!!!
24
25
cos 2 A  cos 2 A  sin 2 A 
9  16

25
7
25
A is greater than 45
degrees – hence 2A is
greater than 90
degrees.
Find the exact value of sin 75o.
2
sin(75o )  sin(45  30)
sin(75o )  sin 45cos30  cos 45sin 30
45
1
o
1

Prove that
sin(   )
 tan   tan 
cos cos 
sin(   )
sin  cos   cos sin 

cos cos 
cos cos 
sin  sin 

cos cos 
 tan   tan 
30o
1
1 3 1 1
1 3


2 2
22
2 2

2
Q.E.D.
3
For the diagram opposite show that cos LMN 
5
.
5
M

cos LMN  cos(   )
3 2
Length of LM 
18  3 2
Length of MN 
10


1 3
1 1

2 10
2 10
2
2


20
4 5
5
5
10
3
3
cos(   )  cos cos   sin  sin 


1
5
L
1
N
(A Higher Question)
Show that, for the triangle ABC in the diagram, a 
a
b
c


sin a sin b sin c
b sin 
.
cos(   )

The sine
rule
b

From the diagram:
C
a
b

sin  sin(  [  2   ])


a
b
sin( 2  [   ])
The sum of the angles of
a triangle=180
sin( 2   )  cos
b
cos(   )
b sin 
cos(   )
As required
A
2
c

a
B
Prove that,
cos 4   sin 4   cos 2 .
x 2  y 2  ( x  y )( x  y )
cos 4   sin 4   (cos 2  ) 2  (sin 2  ) 2
 (cos 2   sin 2  )(cos 2   sin 2  )
cos 2   sin 2   1
 cos 2   sin 2 
cos(   )  cos cos   sin sin 
 cos 2
TRIGONOMETRIC EQUATIONS
Double angle formulae (like cos2A or sin2A) often occur in trig equations.
We can solve these equations by substituting the expressions derived in
the previous sections.
Use
sin2A = 2sinAcosA
when replacing sin2A
cos2A = 2cos2A – 1
cos2A = 1 – 2sin2A
if cosA is also in the equation
if sinA is also in the equation
when replacing cos2A
Solve:
cos 2 x o  4sin x o  5  0 for 0  x  360o.
cos2x and sin x, so substitute 1-2sin2
(1  2sin 2 x)  4sin x  5  0
6  4sin x  2sin 2 x  0
cp. w. 6  4 z  2 z 2  0
(6  2sin x)(1  sin x)  0
sin x  1 or sin x  3

x  90o
0  sin x  1 for all real angles
Solve:
5cos 2 x o  cos x o  2
for 0  x  360o.
cos 2x and cos x, so substitute 2cos2 -1
5(2cos 2 x  1)  cos x  2
10cos 2 x  cos x  3  0
(5cos x  3)(2cos x  1)  0
3
1
cos x 
or cos x  
5
2
x  51.3 or
x  360  51.3
o
 308.7o
s
a
t
c
x  90  60  150o or
x  270  60  210
o
All S_ Talk C*&p ??

2
y  0.6
y0
y  0.5

3
2
The diagram shows the graphs of
f ( x)  a sin bx o
and g ( x)  c sin x o
for 0  x  360o.
y
y
4
y  f ( x)
2
360o
0
-2
xx
y  g ( x)
-4
Three problems concerning this graph follow.
i)
State the values of a, b and c.
y
y
4
f ( x)  a sin bx o
The max & min values of asinbx
are 3 and -3 resp.
The max & min values of sinbx
are 1 and -1 resp.
 a3
2
g ( x)  c sin x o
The max & min values of csinx are
2 and -2 resp.
 c2
360o
0
-2
-4
f(x) goes through 2 complete cycles from 0 – 360o
 b2
y  f ( x)
y  g ( x)
xx
ii) Solve the equation
f ( x)  g ( x) algebraically.
From the previous problem we now have:
f ( x)  3sin 2 x
and
g ( x)  2sin x
Hence, the equation to solve is:
3sin 2 x  2sin x
Expand sin 2x
3(2sin x cos x)  2sin x
6sin x cos x  2sin x  0
Divide both sides by 2
3sin x cos x  sin x  0
Spot the common factor in the terms?
sin x(3cos x  1)  0
Is satisfied by all values of x for which:
sin x  0 or
cos x 
1
3
iii) find the coordinates of the points of intersection of the graphs for 0  x  360o.
From the previous problem we have:
sin x  0 or
sin x  0
cos x 
cos x 
1
3
Hence:
x
 0o
or
x
 70.5o
x
x
 180o
 360o
or
x
x
 (360  70.5)o
 289.5o
or
1
3
Related documents