Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Lecture 11: Introduction to Markov Chains Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • A sequence of RVs indexed by a variable n 2 {0, 1, 2, . . .} forms a discretetime random process {Xn} = {Xn : n = 0, 1, 2, . . .}. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • The process if defined by the collection of all joint distributions of order m, FXn1 ,...,Xnm (x1, . . . , xm) for all instants {n1, . . . , nm} and for all m = 1, 2, 3, . . .. • If the process has the property that, given the present, the future is independent of the past, we say that the process satisfies the Markov property, or, it is a Markov chain. • Furthermore, we are mainly interested in the case where Xt takes on values in some countable set S, called state space. Copyright G. Caire (Sample Lectures) 322 Markov chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Definition 44. The process {Xn} is a Markov chain if it satisfies the Markov property: Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] P(Xn = j|X0 = x0, . . . , Xn for all i, j, x0, . . . , xn 2 1 = i) = P(Xn = j|Xn 1 = i) ⌃ 2 S and for all n = 1, 2, 3, . . .. • The Markov property implies that: P(Xnk = j|Xn0 = x0, . . . , Xnk for all k, n, all n0 n1 · · · nk 1 1 = i) = P(Xnk = j|Xnk 1 = i) nk and all i, j, x0, . . . , xnk 1 . • Also P(Xn+m = j|X0 = x0, . . . , Xm = i) = P(Xn+m = j|Xm = i) Copyright G. Caire (Sample Lectures) 323 Transition probability Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • The evolution of a markov chain is defined by its transition probability, defined by P(Xn+1 = j|Xn = i) (where without loss of generality we may assume that S is an integer set. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Definition 45. The chain {Xn} is called homogeneous if its transition probabilities do not depend on the time, i.e., P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) for all n, i, j. The transition probability matrix P = [pi,j ] is the |S| ⇥ |S| matrix of the transition probabilities, such that pi,j = P(Xn+1 = j|Xn = i) ⌃ Copyright G. Caire (Sample Lectures) 324 Property of the transition matrix Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Theorem 46. The transition matrix P of a Markov chain is a stochastic matrix, that is, it has non-negative elements such that X pi,j = 1 Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] j2S (sum of the elements on each row yields 1) • In order to characterize the probability for n steps transitions, we introduce the n-step transition probability matrix with elements pi,j (m, m + n) = P(Xm+n = j|Xm = i) • By homogeneity, we have that P(m, m + 1) = P. • Furthermore, P(m, m + n) = P(n) does not depend on m. Copyright G. Caire (Sample Lectures) 325 Chapman-Kolmogorov equation Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Theorem 47. pi,j (m, m + n + r) = X pi,k (m, m + n)pk,j (m + n, m + n + r) k Therefore, P(m, m + n + r) = P(m, m + n)P(m + n, m + n + r). It follows that for homogeneous Markov chains, P(m, m + n) = Pn, i.e., P(n) = Pn. Copyright G. Caire (Sample Lectures) 326 Long-term evolution Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We let u(n) denote the pmf of Xn, that is, for each n we have that u(n) is a vector with |S| non-negative components that sum to 1. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Lemma 33. u(m + n) = u(m)Pn, and hence u(n) = u(0)Pn. This describes the pmf of Xn in terms of the initial state pmf u(0). Copyright G. Caire (Sample Lectures) 327 First step and last step conditioning Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We have a MC with transition matrix P. Let A ⇢ S denote a subset of states. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • For i 2 / A, we are interested in the probability P(Xk 2 A for some k = 1, . . . , m|X0 = i) = P ([m k=1 {Xk 2 A}|X0 = i) • Define the stopping time N = min{n Wn = ⇢ 1 : Xn 2 A}, and the new MC Xn n < N a n N where a is a special symbol. Copyright G. Caire (Sample Lectures) 328 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • {Wn} has transition probability matrix Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] qi,j qi,a = pi,j if i 2 / A, j 2 /A X = pi,j if i 2 /A j2A qa,a = 1 • Notice that the original MC enters a state in A by time m if and only if Wm = a, then m P ([m k=1 {Xk 2 A}|X0 = i) = P(Wm = a|W0 = i) = qi,a (m) = [Q ]i,a Copyright G. Caire (Sample Lectures) 329 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • Now, we are interested in the probability of never entering the subset of states A in the times 0, . . . , m, i.e., for i, j 2 / A we wish to compute Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] 1 P {Xm = j} \m / A}|X0 = i k=1 {Xk 2 • The above condition is equivalent to Wm = j conditionally on W0 = i, hence 1 P {Xm = j} \m / A}|X0 = i = qi,j (m) k=1 {Xk 2 Copyright G. Caire (Sample Lectures) 330 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory • Next, we wish to consider the first entrance probability, for i 2 / A and j 2 A Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] 1 P {Xm = j} \m / A}|X0 = i = k=1 {Xk 2 = X r 2A / = X P {Xm = j} \ {Xm P (Xm = j|Xm r 2A / = X pr,j qi,r (m 1 1 2 = r} \m / A}|X0 = i k=1 {Xk 2 = r) P {Xm 1 2 = r} \m / A}|X0 = i k=1 {Xk 2 1) r 2A / • When i 2 A and j 2 / A, we can determine 1 P {Xm = j} \m / A}|X0 = i k=1 {Xk 2 Copyright G. Caire (Sample Lectures) 331 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • By conditioning on the first transition: Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] 1 P {Xm = j} \m / A}|X0 = i = k=1 {Xk 2 = X r 2A / = X r 2A / = X 1 P {Xm = j} \m / A} \ {X1 = r}|X0 = i k=2 {Xk 2 1 P {Xm = j} \m / A}|X1 = r P(X1 = r|X0 = i) k=2 {Xk 2 qr,j (m 1)pi,r r 2A / Copyright G. Caire (Sample Lectures) 332 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • Finally, we can calculate the conditional probability of Xm = j given that the chains starts at X0 = i and has not entered the subset A in any time till time m. For i, j 2 / A, we have Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] P(Xm = j|{X0 = i} \m / A}) = k=1 {Xk 2 P({Xm = j} \m / A}|X0 = i) k=1 {Xk 2 = P(\m / A}|X0 = i) k=1 {Xk 2 1 P({Xm = j} \m / A}|X0 = i) k=1 {Xk 2 =P m 1 P ({X = r} \ / A}|X0 = i) m r 2A / k=1 {Xk 2 qi,j (m) =P r 2A / qi,r (m) Copyright G. Caire (Sample Lectures) 333 Classification of states (1) Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Definition 46. A state i 2 S is called persistent (or recurrent) if Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] P(Xn = i for some n 1|X0 = i) = 1 Otherwise, if the above probability is strictly less than 1, the state is called transient. ⌃ • We are interested in the first passage probability fi,j (n) = P(X1 6= j, X2 6= j, . . . , Xn • We define fi,j = fj,j = 1. P1 Copyright G. Caire (Sample Lectures) n=1 fi,j (n). 1 6= j, Xn = j|X0 = i) Notice: state j is persistent if and only if 334 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We define the generating functions Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Pi,j (s) = 1 X pi,j (n)sn, Fi,j (s) = n=0 with the conditions: pi,j (0) = 1 X fi,j (n)sn n=0 i,j , fi,j (0) = 0 for all i, j 2 S. • We shall assume |s| < 1, since in this way the generating functions converge, and occasionally evaluate limits for s " 1 using Abel’s theorem. • Notice that fi,j = Fi,j (1). Theorem 48. a) Pi,i(s) = 1 + Pi,i(s)Fi,i(s), b) Pi,j (s) = Fi,j (s)Pj,j (s), for i 6= j. Copyright G. Caire (Sample Lectures) 335 Classification of states (2) Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory P Corollary 6. a) State j is persistent if n pj,j (n) = 1. If this holds, then P n pi,j (n) = 1 for all states P i such that fi,j > 0. P b) State j is transient if n pj,j (n) < 1. If this holds then n pi,j (n) < 1 for all i. c) If j is transient, then pi,j (n) ! 0 as n ! 1. Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • Let N (i) denote the number of times a chain visit state i given that its starting point is i. It is intuitively clear that ⇢ 1 i is persistent P(N (i) = 1) = 0 i is transient • Let Tj = min{n : Xn = j} denote the time to the first visit to state j. This is a random variable, with the convention that Tj = 1 is the visit never occurs. • We have that P(Tj = 1|X0 = j) > 0 if and only if j is transient an in this case E[Tj |X0 = j] = 1. Copyright G. Caire (Sample Lectures) 336 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We define the mean recurrence time µj of a state j as Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] µj = E[Tj |X0 = j] = ⇢ P 1 n nfj,j (n) j is persistent j is transient Notice: µj may be infinity even though the state is persistent! Definition 47. A persistent state j is called null if µj = 1 and non-null or positive if µj < 1. ⌃ Theorem 49. A persistent state i is null if and only if pi,i(n) ! 0 as n ! 1. If this holds, then pj,i(n) ! 0 for all j. Copyright G. Caire (Sample Lectures) 337 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • Let d(i) denote the period of state i, defined as Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] d(i) = GCD{n : pi,i(n) > 0} • We call i periodic, if d(i) > 1, and aperiodic if d(i) = 1. Definition 48. A state is called ergodic if it is persistent, non-null and aperiodic. ⌃ Copyright G. Caire (Sample Lectures) 338 Classification of chains (1) Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We say that state i communicates with state j (written i ! j) if pi,j (n) > 0 for some n 0. In this case, state j can be reached from state i with positive probability. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • We say that state i and j intercommunicate if i ! j and j ! i. In this case, we write i $ j. • Clearly, i $ i, since pi,i(0) = 1. • Also, i ! j if and only if fi,j > 0. • Intercommunication $ induces an equivalence relation on the state space. In fact, if i $ j and j $ k then i $ k. Hence, S can be partitioned into equivalence classes of mutually intercommunicating states. Copyright G. Caire (Sample Lectures) 339 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Theorem 50. If i $ j then: a) i and j have the same period; b) i is transient if and only if j is transient; c) i is null persistent if and only if j is null persistent; Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Copyright G. Caire (Sample Lectures) 340 Classification of chains (2) Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Definition 49. A set C ✓ S of states is called: a) closed if pi,j = 0 for all i 2 C and j 2 / C. b) irreducible if i $ j for all i, j 2 C. Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] ⌃ • Once the chain enters a closed set of states, it will never leave it (trapped). • A closed set of cardinality 1 (single state) is called absorbing state. • For example, the state 0 in a branching process is an absorbing state. • Equivalence classes with respect to the relation $ are irrducible. • We call an irreducible set C aperiodic, persistent null, persistent etc .. if all states in the set have the property. Copyright G. Caire (Sample Lectures) 341 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Theorem 51. Decomposition theorem. The state space S can be uniquely partitioned as S = T [ C1 [ C2 [ · · · where T is the set of transient states, and Ci are irreducible closed sets of persistent states. Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Copyright G. Caire (Sample Lectures) 342 Qualitative behavior of Markov chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • In light of Theorem 51 we can identify the following behaviors: Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • If the chain starts in some state i 2 Cr , then it stays in Cr forever. • If the chain starts in T , then either it stays in T forever or eventually will end up into some Cr . • If S is finite (finite-state Markov chain), then the first possibility cannot occur: Lemma 34. If S is finite, then at least one state is persistent and all persistent states are non-null. Copyright G. Caire (Sample Lectures) 343 Example Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Let S = {1, 2, 3, 4, 5, 6} and consider the transition matrix Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] 2 6 6 6 6 P=6 6 6 6 4 Copyright G. Caire (Sample Lectures) 1 2 1 4 1 4 1 4 1 2 3 4 1 4 3 0 0 0 0 0 0 0 0 7 7 7 1 1 7 4 4 0 0 7 0 14 14 0 14 7 7 7 0 0 0 0 12 12 5 0 0 0 0 12 12 344 Stationary distribution Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Definition 50. The vector ⇡ is called a stationary distribution of the chain if it has entries {⇡j : j 2 S}Psuch that: a) ⇡j 0 for all j, and j2S ⇡j = 1.P b) it satisfies ⇡ = ⇡P, that is, ⇡j = i ⇡ipi,j , for all j 2 S. ⌃ Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • This is called “stationary distribution” since if X0 is distributed with u(0) = ⇡, then all Xn will have the same distribution, in fact u(n) = u(0)Pn = ⇡Pn = ⇡PPn 1 = ⇡Pn 1 = ··· = ⇡ • Given the classification of chains and the decomposition theorem, we shall assume that the chain is irreducible, that is, its state space is formed by a single equivalence class of intercommunicating (persistent) states C, or by the class of transient states T . Copyright G. Caire (Sample Lectures) 345 Stationary distribution and mean recurrence time Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] Theorem 52. A irreducible chain has a stationary distribution ⇡ if and only if all states are non-null persistent. In this case, ⇡ is unique and satisfies ⇡j = µ1j , where µj is the mean recurrence time of state j. Copyright G. Caire (Sample Lectures) 346 Solution of the linear equation x = xP Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • Fix a state k 2 S. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • Let ⇢i(k) denote the mean number of visits of the chain to state i between two successive visits to state k. • Defining Ni = 1 X n=1 I{Xn=i}\{Tk n} where Tk is the time of first passage to state k, we have ⇢i(k) = E[Ni|X0 = k] = Copyright G. Caire (Sample Lectures) 1 X P(Xn = i, Tk n|X0 = k) n=1 347 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory • Since k is persistent, then Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] ⇢k (k) = = 1 X n=1 1 X P(Xn = k, Tk n|X0 = k) P(Tk = n|X0 = k) = n=1 1 X fk,k (n) = 1 n=1 P • It is also clear that Tk = i2S Ni, since the time between two visits to state k must be spent somewhere else. Taking expectations, we find X µk = ⇢i(k) i2S this shows that the vector ⇢(k) = {⇢i(k) : i 2 S} contains the terms whose sum is equal to the mean recurrence time of state k, denoted as usual by µk . Copyright G. Caire (Sample Lectures) 348 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Lemma 35. For any state k of an irreducible persistent chain, the vector ⇢(k) satisfies ⇢i(k) < 1 for all i and furthermore ⇢(k) = ⇢(k)P. Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • For an irreducible persistent chain, we have proved that the equation x = xP has a solution ⇢(k) with non-negative entries, that sum to µk . • If state k is non-null, then µk < 1, and therefore the vector ⇡ = ⇢(k)/µk is non-negative, with sum 1, and solution of the equation x = xP. • It follows that ⇡ = ⇢(k)/µk is a stationary distribution. • This shows that every non-null persistent irreducible chain has a stationary distribution, summarized as follows: Theorem 53. If the chain is irreducible and persistent, there exists a positive root x of the equation xP= xP which is unique P up to a multiplicative constant. The chain is non-null if i xi < 1 and null if i xi = 1. Copyright G. Caire (Sample Lectures) 349 Example: irreducible class of the previous example Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Let S = {1, 2} and consider the transition matrix Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] P= Copyright G. Caire (Sample Lectures) " 1 2 1 4 1 2 3 4 # 350 Criterion for non-null persistency of irreducible chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • Consider an irreducible chain (notice: irreducibility must be checked directly by inspection). • In order to check if the chain is non-null persistent, we just have to look for a stationary distribution. • Since Theorem 52 is a necessary and sufficient condition, if we find ⇡, then we conclude that the chain is non-null persistent. Copyright G. Caire (Sample Lectures) 351 Criterion for transience of irreducible chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Theorem 54. Let s 2 S be a state of an irreducible chain. The chain is transient if an only if there exists a non-zero solution {yj : j 6= s} satisfying |yj | 1 for all j, to the system of equations Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] yi = X j:j6=s Copyright G. Caire (Sample Lectures) pi,j yj , 8 i 6= s 352 Criterion for persistency and null persistency Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • It follows from Theorem 54 that an irreducible chain is persistent if and only if the only bounded solution to the system of equations in Theorem 54 is the zero vector yj = 0 for all j. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • If this happens, but the chain has no stationary distribution, then we conclude that the chain is null persistent. • Another condition for null persistency is given as follows: Theorem 55. Let s 2 S be a state of an irreducible chain with S = {0, 1, 2, . . .}. The chain is persistent if there exists a solution {yj : j 6= s} to the system of inequalities X yi pi,j yj , 8 i 6= s j:j6=s such that yi ! 1 as i ! 1. Copyright G. Caire (Sample Lectures) 353 Ergodic behavior of Markov chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • We are interested in the limit of the n-th order transition probabilities, pi,j (n), for large n. Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] • Periodicity yields some difficulties, as the following examples shows: Example: consider S = {1, 2}, with p1,2 = p2,1 = 1. Then, p1,1(n) = p2,2(n) = ⇢ 0 if n is odd 1 if n is even • It is clear that if states are periodic, the sequence of n-th order transition probabilities may not converge. Copyright G. Caire (Sample Lectures) 354 Ergodic theorem for Markov chains Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Theorem 56. For an irreducible aperiodic chain, we have that Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] lim pi,j (n) = n!1 1 µj 8 i, j 2 S Remarks: • If the chain is transient or null-persistent, then pi,j (n) ! 0 for all i, j since µj = 1. • If the chain is non-null persistent, then pi,j (n) ! i, where ⇡ is the unique stationary distribution. 1 µj = ⇡j > 0, independent of • From Theorem 56 we see that in any case, for an irreducible aperiodic chain, the limit of pi,j (n) is independent of X0 = i. Copyright G. Caire (Sample Lectures) 355 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin • Therefore, the chain forgets its starting point. It follows that Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] P(Xn = j) = X i 1 P(X0 = i)pi,j (n) ! µj irrespectively of the initial pmf vector u(0) = {P(X0 = i), i 2 S}. • If the chain {Xn} is periodic, it turns out that a “sampling of the chain at integer multiples of the period” {Yn = Xdn : n 0} is aperiodic. In this case, letting qj,j (n) = P(Yn = j|Y0 = j), it turns out that qj,j (n) = P(Xnd d = j|X0 = j) = pj,j (nd) ! µj or, equivalently, that the mean recurrence time of the new chain {Yn} is equal to 1/d times the mean recurrence time of the original chain. Copyright G. Caire (Sample Lectures) 356 Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Systems Information and Communication Theory Prof. Dr. Giuseppe Caire Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Telefax +49 (0)30 314-28320 [email protected] Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 [email protected] End of Lecture 11 Copyright G. Caire (Sample Lectures) 357