Download d-mosfet

Document related concepts

Resistive opto-isolator wikipedia , lookup

Alternating current wikipedia , lookup

Current source wikipedia , lookup

Rectiverter wikipedia , lookup

Buck converter wikipedia , lookup

Transistor wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
FET
FET’s (Field – Effect Transistors) are much like BJT’s (Bipolar Junction Transistors).
Similarities:
• Amplifiers
• Switching devices
• Impedance matching circuits
Differences:
• FET’s are voltage controlled devices whereas BJT’s are current controlled
devices.
• FET’s also have a higher input impedance, but BJT’s have higher gains.
• FET’s are less sensitive to temperature variations and because of there
construction they are more easily integrated on IC’s.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
FET Types
• JFET ~ Junction Field-Effect Transistor
• MOSFET ~ Metal-Oxide Field-Effect Transistor
- D-MOSFET ~ Depletion MOSFET
- E-MOSFET ~ Enhancement MOSFET
Categories
FET
JUNCTION
Depletion
P channel N channel
METAL-OXIDE
semiconductor
Depletion
P channel N channel
Enhancement
P channel
N channel
Junction Field Effect Transistor
(JFET)
THE JUNCTION FIELD-EFFECT
TRANSISTOR (JFET)

The JFET is a type of FET that
operates with a reverse-biased
junction to control current in the
channel
JFET Symbols
++
JFET Basic Operation

VGS <= 0
-
The JFET is always operated with
+
 Drain-to-Source
channel of current (เส้ นทางการเดินของกระแส)
 n-channel
or p-channel
 Gate-to-Source
pn junction reverse-biased
door to control amount of current flow between DrainSource
 VGS (CUT_OFF) <= VGS <= 0
a
IDS
How VGS control IDS?
 การควบคุมกระแส IDS

ทาได้ โดย
การปรับการขยายตัวของ depletion region ระหว่ าง Gate
กับ channel
 |VGS
|= 0
ให้ ค่ากระแส IDS สูงที่สุด
 ประตูปิดช้ า กระแสไหลผ่ านได้ มาก

 |VGS
|<0
ให้ ค่ากระแส IDS น้ อยลง
 เร่ งให้ ประตูปิดเร็วขึน
้ กระแสไหลได้ น้อยลง

Relationship between VGS and IDS
VGS(1) = -a1
IDS(1) = k1
VGS(2) = -a2
IDS(2) = k2
|VGS |: a1 < a2 < a3
IDS: k1 > k2 > k3
VGS(3) = -a3
IDS(3) = k3
VGS controls ID.
•JFET must be operated between VGS =0
and VGS(off)
VGS (off) = VGS (MAX) -> IDS = 0
JFET Construction
There are two types of JFET’s: n-channel and p-channel.
The n-channel is more widely used.
There are three terminals: Drain (D) and Source (S) are connected to n-channel
Gate (G) is connected to the p-type material
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
FIGURE 5-5
Varying reverse-bias potentials across the p-n junction of an n-channel JFET.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
A. VGS = 0, VDS increasing to some positive value
Three things happen when VGS = 0 and VDS is increased from 0 to a more positive voltage:
• the depletion region between p-gate and n-channel increases as electrons from
n-channel combine with holes from p-gate.
• increasing the depletion region, decreases the size of the n-channel which
increases the resistance of the n-channel.
• But even though the n-channel resistance is increasing, the current (ID) from
Source to Drain through the n-channel is increasing. This is because VDS is increasing.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Pinch-off
If VGS = 0 and VDS is further increased to a more positive voltage, then the depletion zone
gets so large that it pinches off the n-channel. This suggests that the current in the nchannel (ID) would drop to 0A, but it does just the opposite: as VDS increases, so does ID.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
JFET CHARACTERISTICS
IDSS is maximum drain current occurring for VGS =0 V,
and the value of VDS which ID becomes constant is the
pinch-off voltage
Comparison of Pinch-Off and Cutoff

Vp is the value of VDS



which the drain current becomes constant
and is always measured at VGS =0 V
VGS(off) and Vp are always equal in
magnitude but opposite in sign
Transfer Curve
From this graph it is easy to determine the value of ID for a given value of VGS.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
The transfer characteristic of input-to-output is not as straight
forward in a JFET as it was in a BJT.
In a BJT,  indicated the relationship between IB (input) and IC
(output).
In a JFET, the relationship of VGS (input) and ID (output) is a little
more complicated:
VGS 2
ID  IDSS(1
)
VP
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
DC Bias for JFET
2 types of DC bias for JFET
 Fixed
bias
- 2 sources
 Self
bias
- Single source ( 1 source)
DC bias for JFET
Fixed bias (2 DC sources)
Load Line for JFET DC bias
Fixed bias (ID, VDS)
VDD
Load Line: VDS vs IDS
RD
RG
IDS
VDD  I DS RD  VDS
I D  I DS
VDS VDD


RD RD
Load Line for JFET DC bias
Fixed bias (ID, VGS)
VGSQ=-2V, IDQ=5.625mA, VDS = 4.75V
DC bias for JFET
Self bias (Single Source)
VDD
VG = 0
RD
RG
IDS
Load Line: VDS vs IDS
RS
VDD  I DS RD  VDS  I DS RS
I DS
 1
 
 RD  RS

 1
VDS  

 RD  RS

VDD

DC bias for JFET
Self bias (Single Source)
Example for JFET DC bias
Self bias (Single Source)
VGSQ=-2.6V, IDQ=2.6mA
DC bias for JFET
Voltage Divider Bias (Single Source)
Load Line for JFET DC bias
Voltage Divider bias (ID, VDS)
Example for JFET DC bias
Voltage Divider bias (Single Source)
P-channel JFET
p-Channel JFET acts the same as the n-channel JFET, except the polarities and currents are
reversed.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
P-Channel JFET Characteristics
As VGS increases more positively:
• the depletion zone increases
• ID decreases (ID < IDSS)
• eventually ID = 0A
Also note that at high levels of VDS the JFET reaches a breakdown situation. ID increases
uncontrollably if VDS > VDSmax.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Specification Sheet (JFETs)
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
MOSFETs
MOSFETs have characteristics similar to JFETs and additional
characteristics that make then very useful.
- Low power consumption
- No gate current: SiO2 at Gate
There are 2 types:
• Depletion-Type MOSFET
• Enhancement-Type MOSFET
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Depletion
MOSFET
(D-MOSFET)
THE METAL-OXIDE SEMICONDUCTOR
FET(MOSFET)

Depletion MOSFET (D-MOSFET)

D-MOSFET can be operated either the
depletion mode or the enhancement
mode
D-MOSFET Symbols
Main Function of
Depletion MOSFET
Control Current flow from Drain-to-Source
Two main control mode
 Depletion
mode
 Enhancement
mode
Depletion Mode

N-channel

Vgs -> negative

Electrons from D-to-S
channel


Push to P-type substrate
The more the negative
value of Vgs

The less amount of current
flow from D-to-S
Enhancement mode
 N-channel

Vgs -> positive
 Electron


from p-substrate
Pulled into D-to-S channel
Increase amount of electrions in the
channel
Basic Operation (n-channel D-MOSFET)
A Depletion MOSFET can operate in two modes: Depletion or Enhancement mode.
I D  k (VGS  VP ) 2
k
ID(on)
(VGS(ON)  VP) 2
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
p-Channel Depletion-Type MOSFET
The p-channel Depletion-type MOSFET is similar to the n-channel except that the voltage
polarities and current directions are reversed.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Specification Sheet
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
คุณลักษณะของ D-MOSFET

Channel การไหลของกระแสแคบกว่า JFET มาก


Switching speed



่
การเปิ ดปิ ดประตู (Gate) เพือควบคุ
มปริมาณกระแสให้ไหล
ตามต้องการได้เร็วกว่า JFET
On (กระแสไหล) -> Off (กระแสไม่ไหล) หรือ ในทางกลับกัน
เร็วกว่า JFET
เหมาะกับวงจร Digital ได้ดก
ี ว่า JFET
Example for n-channel D-MOSFET DC bias
Voltage Divider bias (Single Source)
I D  k (VGS  VP ) 2
Enhancement
MOSFET
(E-MOSFET)
Enhancement MOSFET(E-MOSFET)
N-MOS
E-MOSFET symbol
D
D
G
G
B
S
N-channel
B
S
P-channel
คุณลักษณะของ E-MOSFET
ไม่ มี channel ที่แท้ จริง (no physical channel)
 ใช้ virtual channel ที่สร้ างขึน
้ จาก

ใช้ VGS ควบคุม การมีหรื อไม่ มี virtual channel
 การดึงดูด carrier ชนิดเดียวกับ channel มาเชื่อมช่ องทางเดิน
กระแส เพื่อให้ กระแส IDS เป็ นตามต้ องการ


Switching speed

ความเร็วในการให้ กระแสไหล หรื อ หยุดไหล เร็วมากกว่ า
 JFET


และ D-MOSFET
หยุดป้ อน VGS virtual channel หายไปเกือบจะทันที
นิยมใช้ ใน Combinational Logic, CPU, Memory โดยเฉพาะ

CMOS ซึ่งเป็ น E-MOSFET ชนิดหนึ่ง
How to induce the Channel D-to-S
source-drain current below saturation
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
source-drain current for pinch-off
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
source-drain current in saturation
Semiconductor Devices, 2/E by S. M. Sze, Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
Transfer Curve
I D  k (VGS VT ) 2
To determine ID given VGS:
[Formula 5.13]
where VT = threshold voltage or voltage at which the MOSFET turns on.
k = constant found in the specification sheet
k can also be determined by using values at a specific point and the formula:
ID(on)
[Formula 5.14]
k
(VGS(ON)  VT) 2
VDSsat can also be calculated:
VDsat VGS VT
[Formula 5.12]
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
Load Line for n-channel E-MOSFET DC bias
Voltage Divider bias (Single Source)
I D  k (VGS VT ) 2
k
ID(on)
 0.12 x103 A / V 2
2
(VGS(ON)  VT)
VDD = 40V, R1=22MOhm, R2=18MOhm, RD=3kOhm, Rs=0.82kOhm
E-MOSFET (2N4351): VGS(Th)=VT=5V, ID(on)=3mA, VGS(on)=10V
VGSQ=12.5V, IDQ=6.7mA
Load Line for n-channel E-MOSFET DC bias
Feedback bias (Single Source)
Example for n-channel E-MOSFET DC bias
Feedback bias (Single Source)
Specification Sheet
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
VMOS
VMOS – Vertical MOSFET increases the surface area of the device.
Advantage:
• This allows the device to handle higher currents by providing it more surface
area to dissipate the heat.
• VMOSs also have faster switching times.
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
CMOS
CMOS – Complementary MOSFET p-channel and n-channel MOSFET on the same
substrate.
Advantage:
• Useful in logic circuit designs
• Higher input impedance
• Faster switching speeds
• Lower operating power levels
Copyright ©2002 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458
All rights reserved.
CMOS
N-MOS
P-MOS
From device to system
SYSTEM
MODULE
+
GATE
CIRCUIT
DEVICE
G
S
n+
Figure 1.5
D
n+
Application of CMOS
Microprocessor
Transistor Counts
1 Billion
Transistors
K
1,000,000
100,000
10,000
1,000
i486
i386
80286
100
10
Pentium® III
Pentium® II
Pentium® Pro
Pentium®
8086
Source: Intel
1
1975 1980 1985 1990 1995 2000 2005 2010
Projected
Figure 1.1
Courtesy, Intel
Application of CMOS

1970: Fairchild introduces 256-bit Static RAMs

1970: Intel starts selling1K-bit Dynamic RAMs
Fairchild 4100 256-bit SRAM
Intel 1103 1K-bit DRAM
Memory trends
Figure 1.2