Download Cardiogenic Shock: Monitoring Methods and end Points

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Cardiogenic Shock:
Monitoring Methods and
end Points
M. Maggiorini
Intensive Care Unit
Department of Internal Medicine
University Hospital Zurich
Key elements of cardiac output
Cardiac Output (CO)
STROKE VOLUME
CONTRACTILITY
HEART RATE
AFTERLOAD
CAVE: Assure organ
perfusion pressure !
PRELOAD
Cardiac Function: Pressure/Volume loop
Pressure-Volume relationship of the LV
syst. Aortic P. = max LV elastance
Diast.. Aortic P.
Diast
Maximal LV
wall stress in
failing LV
Myoc.
Myoc.
ischemia
Ä in LVLVcompliance
active
diast..
diast
relaxation
×
≈ Diast
Diast..
compliance
®
Maximal LV wall
stress = LV afterload
LV Endiastolic P.
LV Endiastolic P.
LV Endiast
Endiast.. Volume
≈ LV preload
Cardiac Contractility
lic
ela
sta
n
Emax = maximal LV elastance
(index of contractility
contractility))
d- s
ys t
o
-en
LV
LV pressure
ce
LV pressure-volume histories (1, 2, 3) at different prealoads
LV end-diastolic
elastance
3
1 2
LV end-diastolic pressure
LV end-diastolic volume
Emax = Highest ratio between LV end
end--systolic pressure and LV
LV--end
end-diastolic volume
Loss of cardiac contractility in heart failure
LV end-systolic elastance (Ees) and diastolic
compliance in systolic dysfunction
Left ventricular contractility
es )
Emax
SV 1
las
tan
ce
(E
LV
E
LV Pressure
Ees Ä
LV pressure-volume
histories at higher preload
Emax Ã
SV1 = SV3
Emax Ä
SV 3
SV 2
LVEDP Ã
Diastolic compliance
LV Volume
Maximal LV elastance (Emax) = Highest ratio between LV
end-systolic pressure and LV-end-diastolic volume
Cardiac preload
(Frank-Starling relationship)
Change in stroke volume after 200 ml fluid challenge
Energy of Contraction
Stroke volume
Degree of stretch of the
myocytes during diastole
Heart failure
ideal
RV/LV end-diastolic volume
Intrinsic strength of
contraction (contractility) of
the myocytes for a given
degree of stretch during
diastole
Stroke Work = ∆ Pressure x Stroke Volume
Assessment of cardiac preload and
contractility clinical practice
Stroke volume
normal
SV deficit
Afterload Ä
and/or
Inotropy Ã
heart failure
Fluid loading
Optimal filling
LV-enddiastolic volume (LVEDV)
Global End-diastolic Volume
RA
RV
LA
LV
LA
LV
GEDV a marker of preload
ITTV
CO x MTtT Da
EVLW
RA
RV
200 ml fluid challenge
CO x DStT Da
EVLW
GEDV = ITTV - PTV
RA
RV
LA
LV
EVLW
GEDV = CO x (MTtTDa - DStTDa )
Stroke volume
PTV
best
Global end-diastolic volume
Assessment of cardiac preload and
contractility clinical practice:
applied pathophysiology at the bed side
Cardiac output
(Cardiac Index)
CI 3.5-5.5 l/min/m 2
CI aim to cope
with VO2 demand
CI 2.9 l/min/m 2
SV deficit
Afterload Ä
and/or
Inotropy Ã
CI < 2.2 l/min/m2
Fluid loading
CI 1.5 l/min/m 2
~ 600 -1000 ml/m2
global enddiastolic volume index (GEDVI)
Assessment of Cardiac contractility
Blood Flow / Enddiastolic Volume relationship
• CFI = CI/GEDVI
• GEF = (CI/HR)/GEDVI
CI (l/min/m 2)
10.0
Cardiac Funtion Index
10.0
8.0
Normal
7.5
CFI (1/min)
6.0
area to meet
5.0
4.0
Heart failure
2.5
2.0
0.0
0
200
400
600
800
GEDVI (ml/m 2)
1000
1200
P<0.001
Heart failure
Sepsis
Assessment of cardiac contractility by the
calculation of cardiac function index (CFI) or
global ejection fraction (GEF) at the bed side
Cardiac output
(Cardiac Index)
CFI > 3.5; GEF > 25%
CFI 2.9; GEF 18%
Deficit in
contractility
Dobutamine Ã
CFI 2.1; GEF 8%
Fluid loading
CFI 2.1; GEF 8%
~ 600 -1000 ml/m2
global enddiastolic volume index (GEDVI)
Decreased LV enddiastolic elastance
ela
s ta
nce
LV
-en
d-s
ysto
lic
LV pressure
Diastolic dysfunction in heart failure
1a
3
1 2
SV Ä
LVDP Ã
LVEDV Ã
2b
3c
Normal LV end-diastolic
elastance
LV end-diastolic pressure (LVEDP)
LV end-diastolic volume (LVEDV)
LV presure-volume histories (1, 2, 3) following changes in prealoads
In cardiac patients changes pulmonary
artery occlusion (wedge) pressure reflect
left ventricular elastance and not LVEDV
Change in venous pressure
Cvp/Paop
Stroke volume
Change in stroke volume
?
?
RV/LV end-diastolic volume
RV/LV end-diastolic volume
Week of a correlation between PAOP and
cardiac output or cardiac function index
Cardiac output
Cardiac function index
Ritter et al. unpublished
Pulmonary artery occlusion (wedge)
pressure in cardiac patients
¾ Guided by:
y Systolic dysfunction
y Diastolic dysfunction
Pressure (mmHg)
z Monitoring of LV elastance
50
40
30
20
10
0
Pra
Ppa
Ppao
y LV end-distolic volume
Optimal Ppao is the lowest value that results in the highest
cardiac output and no increase in extravascular lung water
Determinants of Cardiac Output
Cardiac Output (CO)
STROKE VOLUME
CONTRACTILITY
HEART RATE
AFTERLOAD
PRELOAD
Afterload a determinant of Cardiac Output
Vascular impedance
Definition
ELASTANCE
SVR
REFLECTED
WAVE
¾Is the force facing the
ventricle, vascular
Impedance,
Impedance which must
be overcome by the
ventricle to open the
valve and eject blood
into the artery.
Vascular impedance is best appreciated by the
ratio between arterial pressure and cardiac output
ELASTANCE
SVR
REFLECTED
WAVE
Pressure/Bloodflow relationship
Mean arterial pressure
Vascular impedance
α = high resistance
β = low resistance
α β
0
Cardiac output
Total vascular resistance SVRtot = MAP / CO
Afterload reduction improves cardiac output:
applied pathophysiology at the bed side
Cardiac output
(Cardiac Index)
CI 3.5-5.5 l/min/m 2
CI aim to cope
with VO2 demand
CI 2.9 l/min/m 2
SV deficit
Nitrates
CI < 2.2 l/min/m2
Fluid loading
CI 1.5 l/min/m 2
~ 600 -1000 ml/m2
global enddiastolic volume index (GEDVI)
Hemodynamic management using the
PiCCO monitoring system
Inotropy
CFI or GEF
Preload
GEDVI
(> 3.5 or > 20%)
Heart rate
(600-1000 ml/m2)
Flow = pressure / resistance
Cardiac Output
Pressure/Bloodflow relationship
Pressure = Flow * resistance
Mean arterial
pressure
Pin - Pout
α = high resistance
β = low resistance
0
0
α β
Cardiac output
Total systemic vascular resistance
Pulmonary venous hypertension
Decreased left ventricular elastance following left ventricular systolic
and diastolic dysfunction lead to pulmonary venous hypertension
and in 70% of the cases to pulmonary edema
70
60
50
mPpa 45 mmHg
40
30
20
Ppao 32 mmHg
10 PVR = mPpa - Ppao
CO
0
Zeit
Extra vascular lung water (EVLW) for the
monitoring of hydrostatic pulmonary edema
z 3 elements
ITBV
PBV
ITGV
GEDV
z Pulmonary venous hypertension
z Pulmonary Blood Volume (PBV)
z Pulmonary vascular permeability
EVLW
PVPI = EVLW / PBV
Lung gas volume (ITGV)
Pulmonary Vascular Permeability Index (PVPI)
PiCCO derived Extra-Vascular Lung Water
ITTV = intrathoracal thermovolume
ITBV = caluculated (b) intrathoracal
bloodvolumen
RA
RV
LA
LV
LA
LV
LA
LV
ITTV
EVLW
EVLW = ITTV - ITBVb
ITTV = CO x MTtTDa
RA
RV
ITBVb
ITBVb = GEDV * 1.25
EVLW
RA
EVLW = ITTV - (GEDV * 1.25)
RV
EVLW
EVLW
Changes in EVLW after ICU admission
a prognostic marker
EVLW Evolution: Changes During first 3 ICU D
Mean (SD) in Percent
25
Non cardiogenic Edema Cardiogenic Edema
21.9% (15) 22.4% (10)
Percent (%)
20
15
p=0.04
p=0.03
10
6.3% (27)
6.2% (20)
5
0
Survivors (17 Pts)
Non Survivors (9 Pts)
Ritter et al.
SGI 2006
EVLW Changes <10% or Maximum Value <12 ml/kg
Æ Odds Ratio for ICU Mortality 0.07* (95% CI 0.01-0.68)
*p<0.05
Transition from hydrostatic to
inflammatory type of pulmonary edema
Hydrostatic
Inflamm.
LV failure
ARDS
Acute onset
+++
+++
Oxygenation
ØØ
ØØ
Bilateral infilt.
+++
+++
Ppao (Wedge)
×××
Ù×
Ù
×××
Leak = Ã PVPI
????
ŅLeakÓ
Ù normal, × = elevated, Ø = reduced
56 y.
old
male
HR
MAP
CVP
PPA
PAOP
CI-PAC
CI-PICCO
CFI
GEF
GEDI
EVLW
PVPI
Hb-aO2
Hb-vO2
Hb-cvO2
lactate
Dobu
Levo
Nor
Balance
T0
90
70
18
45
24
1.7
1.8
1.6
6
1037
15
2.3
97
58
T0+24h
120
70
14
40
21
2.4
2.5
2.2
9
1171
15
2
97
57
3.5
1.1
T0+48h
125
70
18
50
24
1.8
1.9
1.9
7
939
15
2.5
96
44
55
1.4
T0+72h
100
70
22
T0+96h
90
72
16
1.4
1.7
8
814
15
3
97
2.7
2.9
13
911
14
2.7
95
46
3.1
61
1.2
0
0
29
400
0
11
0
0
0
0
0
0
100
0.2
0
-
-850
-880
30
-2000
Limitations the PiCCO monitoring
system in acute heart failure: rapid
changes in Paop can not be assessed
Stroke volume
Pulmonary artery occluded pressure
Placebo
Levosimendan
Levosimendan
Placebo
Time (h)
Time (h)
Kivikko et al Circ 2003, 107:81
RAP > PAOP
Jardin and Vielliard-Baron
Curr Opin Crit Care 2005, 11:171
Limitations the PiCCO monitoring
system in acute heart failure: can not
differentiate between RV and LV failure
End points for the treatment of AHF using
the PiCCO monitoring system
z To restore cardiac function in order to meet body
oxygen requirements, hence improve oxygen
supply and organs perfusion.
z Hemodynamic goals
¾ Cardiac Index > 2.2 l.m-1.m2
¾ Cardiac function index > 3.5 or GEF > 20%
¾ Mean artery pressure 55 - 75 mmHg
¾ GEDVI between 600 and 1000 ml/m2 to meet the optimal
cardiac output
¾ EVLW < 10ml/kg
Related documents