Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Cardiogenic Shock: Monitoring Methods and end Points M. Maggiorini Intensive Care Unit Department of Internal Medicine University Hospital Zurich Key elements of cardiac output Cardiac Output (CO) STROKE VOLUME CONTRACTILITY HEART RATE AFTERLOAD CAVE: Assure organ perfusion pressure ! PRELOAD Cardiac Function: Pressure/Volume loop Pressure-Volume relationship of the LV syst. Aortic P. = max LV elastance Diast.. Aortic P. Diast Maximal LV wall stress in failing LV Myoc. Myoc. ischemia Ä in LVLVcompliance active diast.. diast relaxation × ≈ Diast Diast.. compliance ® Maximal LV wall stress = LV afterload LV Endiastolic P. LV Endiastolic P. LV Endiast Endiast.. Volume ≈ LV preload Cardiac Contractility lic ela sta n Emax = maximal LV elastance (index of contractility contractility)) d- s ys t o -en LV LV pressure ce LV pressure-volume histories (1, 2, 3) at different prealoads LV end-diastolic elastance 3 1 2 LV end-diastolic pressure LV end-diastolic volume Emax = Highest ratio between LV end end--systolic pressure and LV LV--end end-diastolic volume Loss of cardiac contractility in heart failure LV end-systolic elastance (Ees) and diastolic compliance in systolic dysfunction Left ventricular contractility es ) Emax SV 1 las tan ce (E LV E LV Pressure Ees Ä LV pressure-volume histories at higher preload Emax à SV1 = SV3 Emax Ä SV 3 SV 2 LVEDP à Diastolic compliance LV Volume Maximal LV elastance (Emax) = Highest ratio between LV end-systolic pressure and LV-end-diastolic volume Cardiac preload (Frank-Starling relationship) Change in stroke volume after 200 ml fluid challenge Energy of Contraction Stroke volume Degree of stretch of the myocytes during diastole Heart failure ideal RV/LV end-diastolic volume Intrinsic strength of contraction (contractility) of the myocytes for a given degree of stretch during diastole Stroke Work = ∆ Pressure x Stroke Volume Assessment of cardiac preload and contractility clinical practice Stroke volume normal SV deficit Afterload Ä and/or Inotropy à heart failure Fluid loading Optimal filling LV-enddiastolic volume (LVEDV) Global End-diastolic Volume RA RV LA LV LA LV GEDV a marker of preload ITTV CO x MTtT Da EVLW RA RV 200 ml fluid challenge CO x DStT Da EVLW GEDV = ITTV - PTV RA RV LA LV EVLW GEDV = CO x (MTtTDa - DStTDa ) Stroke volume PTV best Global end-diastolic volume Assessment of cardiac preload and contractility clinical practice: applied pathophysiology at the bed side Cardiac output (Cardiac Index) CI 3.5-5.5 l/min/m 2 CI aim to cope with VO2 demand CI 2.9 l/min/m 2 SV deficit Afterload Ä and/or Inotropy à CI < 2.2 l/min/m2 Fluid loading CI 1.5 l/min/m 2 ~ 600 -1000 ml/m2 global enddiastolic volume index (GEDVI) Assessment of Cardiac contractility Blood Flow / Enddiastolic Volume relationship • CFI = CI/GEDVI • GEF = (CI/HR)/GEDVI CI (l/min/m 2) 10.0 Cardiac Funtion Index 10.0 8.0 Normal 7.5 CFI (1/min) 6.0 area to meet 5.0 4.0 Heart failure 2.5 2.0 0.0 0 200 400 600 800 GEDVI (ml/m 2) 1000 1200 P<0.001 Heart failure Sepsis Assessment of cardiac contractility by the calculation of cardiac function index (CFI) or global ejection fraction (GEF) at the bed side Cardiac output (Cardiac Index) CFI > 3.5; GEF > 25% CFI 2.9; GEF 18% Deficit in contractility Dobutamine à CFI 2.1; GEF 8% Fluid loading CFI 2.1; GEF 8% ~ 600 -1000 ml/m2 global enddiastolic volume index (GEDVI) Decreased LV enddiastolic elastance ela s ta nce LV -en d-s ysto lic LV pressure Diastolic dysfunction in heart failure 1a 3 1 2 SV Ä LVDP à LVEDV à 2b 3c Normal LV end-diastolic elastance LV end-diastolic pressure (LVEDP) LV end-diastolic volume (LVEDV) LV presure-volume histories (1, 2, 3) following changes in prealoads In cardiac patients changes pulmonary artery occlusion (wedge) pressure reflect left ventricular elastance and not LVEDV Change in venous pressure Cvp/Paop Stroke volume Change in stroke volume ? ? RV/LV end-diastolic volume RV/LV end-diastolic volume Week of a correlation between PAOP and cardiac output or cardiac function index Cardiac output Cardiac function index Ritter et al. unpublished Pulmonary artery occlusion (wedge) pressure in cardiac patients ¾ Guided by: y Systolic dysfunction y Diastolic dysfunction Pressure (mmHg) z Monitoring of LV elastance 50 40 30 20 10 0 Pra Ppa Ppao y LV end-distolic volume Optimal Ppao is the lowest value that results in the highest cardiac output and no increase in extravascular lung water Determinants of Cardiac Output Cardiac Output (CO) STROKE VOLUME CONTRACTILITY HEART RATE AFTERLOAD PRELOAD Afterload a determinant of Cardiac Output Vascular impedance Definition ELASTANCE SVR REFLECTED WAVE ¾Is the force facing the ventricle, vascular Impedance, Impedance which must be overcome by the ventricle to open the valve and eject blood into the artery. Vascular impedance is best appreciated by the ratio between arterial pressure and cardiac output ELASTANCE SVR REFLECTED WAVE Pressure/Bloodflow relationship Mean arterial pressure Vascular impedance α = high resistance β = low resistance α β 0 Cardiac output Total vascular resistance SVRtot = MAP / CO Afterload reduction improves cardiac output: applied pathophysiology at the bed side Cardiac output (Cardiac Index) CI 3.5-5.5 l/min/m 2 CI aim to cope with VO2 demand CI 2.9 l/min/m 2 SV deficit Nitrates CI < 2.2 l/min/m2 Fluid loading CI 1.5 l/min/m 2 ~ 600 -1000 ml/m2 global enddiastolic volume index (GEDVI) Hemodynamic management using the PiCCO monitoring system Inotropy CFI or GEF Preload GEDVI (> 3.5 or > 20%) Heart rate (600-1000 ml/m2) Flow = pressure / resistance Cardiac Output Pressure/Bloodflow relationship Pressure = Flow * resistance Mean arterial pressure Pin - Pout α = high resistance β = low resistance 0 0 α β Cardiac output Total systemic vascular resistance Pulmonary venous hypertension Decreased left ventricular elastance following left ventricular systolic and diastolic dysfunction lead to pulmonary venous hypertension and in 70% of the cases to pulmonary edema 70 60 50 mPpa 45 mmHg 40 30 20 Ppao 32 mmHg 10 PVR = mPpa - Ppao CO 0 Zeit Extra vascular lung water (EVLW) for the monitoring of hydrostatic pulmonary edema z 3 elements ITBV PBV ITGV GEDV z Pulmonary venous hypertension z Pulmonary Blood Volume (PBV) z Pulmonary vascular permeability EVLW PVPI = EVLW / PBV Lung gas volume (ITGV) Pulmonary Vascular Permeability Index (PVPI) PiCCO derived Extra-Vascular Lung Water ITTV = intrathoracal thermovolume ITBV = caluculated (b) intrathoracal bloodvolumen RA RV LA LV LA LV LA LV ITTV EVLW EVLW = ITTV - ITBVb ITTV = CO x MTtTDa RA RV ITBVb ITBVb = GEDV * 1.25 EVLW RA EVLW = ITTV - (GEDV * 1.25) RV EVLW EVLW Changes in EVLW after ICU admission a prognostic marker EVLW Evolution: Changes During first 3 ICU D Mean (SD) in Percent 25 Non cardiogenic Edema Cardiogenic Edema 21.9% (15) 22.4% (10) Percent (%) 20 15 p=0.04 p=0.03 10 6.3% (27) 6.2% (20) 5 0 Survivors (17 Pts) Non Survivors (9 Pts) Ritter et al. SGI 2006 EVLW Changes <10% or Maximum Value <12 ml/kg Æ Odds Ratio for ICU Mortality 0.07* (95% CI 0.01-0.68) *p<0.05 Transition from hydrostatic to inflammatory type of pulmonary edema Hydrostatic Inflamm. LV failure ARDS Acute onset +++ +++ Oxygenation ØØ ØØ Bilateral infilt. +++ +++ Ppao (Wedge) ××× Ù× Ù ××× Leak = à PVPI ???? ŅLeakÓ Ù normal, × = elevated, Ø = reduced 56 y. old male HR MAP CVP PPA PAOP CI-PAC CI-PICCO CFI GEF GEDI EVLW PVPI Hb-aO2 Hb-vO2 Hb-cvO2 lactate Dobu Levo Nor Balance T0 90 70 18 45 24 1.7 1.8 1.6 6 1037 15 2.3 97 58 T0+24h 120 70 14 40 21 2.4 2.5 2.2 9 1171 15 2 97 57 3.5 1.1 T0+48h 125 70 18 50 24 1.8 1.9 1.9 7 939 15 2.5 96 44 55 1.4 T0+72h 100 70 22 T0+96h 90 72 16 1.4 1.7 8 814 15 3 97 2.7 2.9 13 911 14 2.7 95 46 3.1 61 1.2 0 0 29 400 0 11 0 0 0 0 0 0 100 0.2 0 - -850 -880 30 -2000 Limitations the PiCCO monitoring system in acute heart failure: rapid changes in Paop can not be assessed Stroke volume Pulmonary artery occluded pressure Placebo Levosimendan Levosimendan Placebo Time (h) Time (h) Kivikko et al Circ 2003, 107:81 RAP > PAOP Jardin and Vielliard-Baron Curr Opin Crit Care 2005, 11:171 Limitations the PiCCO monitoring system in acute heart failure: can not differentiate between RV and LV failure End points for the treatment of AHF using the PiCCO monitoring system z To restore cardiac function in order to meet body oxygen requirements, hence improve oxygen supply and organs perfusion. z Hemodynamic goals ¾ Cardiac Index > 2.2 l.m-1.m2 ¾ Cardiac function index > 3.5 or GEF > 20% ¾ Mean artery pressure 55 - 75 mmHg ¾ GEDVI between 600 and 1000 ml/m2 to meet the optimal cardiac output ¾ EVLW < 10ml/kg