Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Metal-oxide semiconductor field-effect transistor (MOSFET) Enhancement MOSFET N-channel Border between Triode and Saturation regions VDS=VDSsat=VGS-Vt . Enhancement MOSFET There are three distinct regions of operation: cutoff, triode and saturation. For N-channel MOSFET 1) Cutoff when VGS VT 2) When the channel is first introduced MOSFET is ON VGS VT It can operate on triode or saturation. 2.1) To operate in triode: V DS is kept small channel is continuous VGD VT or VGS VDS VT or VDS VGS VT I D kn' W L 1 2 (VGS VT )VDS 2 V DS If V DS is small V 2 DS can be neglected I D kn' rDS W (VGS VT )VDS Linear relation ( I D VDS ) L VDS 1 (Resistance) ID ' W kn (VGS VT ) L 2.2) To operate MOSFET in saturation 1. VGS VT To induce channel 2. VGD VT (pinched- off channel) Or VDS VGS VT In saturation ID is given by (neglecting ) ID 1 1 W W nC ox (V GS V T ) 2 k n' 2 2 L L channel length modulation effect ID 1 ' W kn 2 L 2 (VGS VT ) (1 VDS ) 2 2 (V GS V T ) K (V GS V T ) PMOS= P-Channel MOSFET For P- channel VT, VGS and VDS are negative To turn transistor ON VGS VT To operate in triode VGD VT or VDS VGS VT I D kn' W L 1 2 (VGS VT )VDS 2 V DS To operate in saturation VGD VT or V DS VGS VT ID 1 pC ox 2 W L 1 ' W 2 (V GS V T ) k p 2 L 2 (V GS V T ) Example 1 Analysis the circuit to determine the voltage at all nodes and the current through all brunches. Vt= 1V , 1 ' W kn 2 L 2 = 0.5mA/V since IG=0 RG1 and RG2 are in series RG 2 10 RG1 RG 2 VG 5V > VT Thus, it is excepted that the transistor is ON. Assume the transistor is working in saturation region ID 1 ' W kn 2 L 2 (VGS VT ) Check VGD VT I D 0.5(VGS 1) 2 (1) VGS VG VS 5 6I D (2) Substitute (2) in (1) I D 0.5(5 6 I D 1) 2 0.5(4 6 I D ) 2 18I D 25I D 8 0 2 I D 0.98mA VS 6I D 5.34 V VG Doesn't make physical sense. I D 0.5mA VS 6I D 3V Thus VGS 5 3 2v VD 10 6I D 7V VGD 5 7 2 VT The assumption is correct Example 2 VT=-1 1 ' W kp 2 L 2 =0.5mA/V P-channel MOSFET VG 3 5 3V 23 VGS 3 5 2 VT The transistor is ON Assume the transistor is working in saturation ID 1 ' W kp 2 L 2 (V GS V T ) I D 0.5 2 (1) 0.5mA 2 VD 6 I D 3V VGD 3 3 0 VT Saturation which confirms that assumption is correct. Example 3 VT=2V 1 ' W kn 2 L 2 =0.1mA/V VGD 0 VT The transistor is working in saturation ID 1 ' W kn 2 L 2 2 (VGS VT ) 0.1(VGS 2) VGS VG VS 10 15 I D 0 10 15 I D I D 0.1(10 15I D 2) 2 0.1(8 15I D ) 2 22.5I D 25I D 6.5 0 2 ID ID 25 (25) 2 4(22.5)(6.4) 2(22.5) 25 7 0.71mA 2(22.5) or I D 0.4mA VG 10 15(0.71) 0.65V Impassible VG 10 15(0.4) 4 VGS 4 VT Small signal ac equivalent circuit for MOSFET MOSFET should work in saturation region ID 1 ' W kn 2 L 2 (VGS VT ) VGS VGS v gs (1) the DC or quiescent current ID (2) Current component that is iD iD 1 ' W kn 2 L 2 (VGS vgs VT ) directly proportional to input vgs . 1 ' W 1 W W kn (VGS VT ) 2 kn' (VGS VT )vgs kn' vgs 2 L 2 L L (1) (2) (3) (3) Current proportional to the square of the input. This component is undesirable because it represents nonlinear distortion. To reduce the nonlinear distortion, the input signal should be kept small vgs 2(VGS VT ) W id kn' L id (VGS VT )vgs g m vgs W g m kn' L ' W (VGS VT ) 2kn L ID For N- channel MOSFET VGS and VT are positive and VGS > VT g m is positive For P- channel MOSFET VGS and VT are negative VGS < VT g m is positive To include the effect of channel length modulation, it is modeled by output resistance ro Where V A 1 , VA ID VA=20 to 200 V ro is in the range 10 to 1000K MOSFET Amplifier 1 ' W kn 2 L VT 1.5V 2 0.5mA / V 1 ' W kn (VGS VT ) 2 2 L I D 0.5(VD 1.5) 2 (1) VD 10 5.6 I D (2) ID I D 0.5(8.5 5.6 I D ) 2 36.125 48.6 I D 15.68 I D 2 0 36.125 48.6 I D 15.68 I D 2 48.6 (48.6) 2 4(15.68)(36.125) ID 2(15.68) I D 1.836 mA or I D 1.24 mA If I D 1.836 mA VD=-0.4V impossible If I D 1.24mA VD=3.1V VG VD VGS 3.1V W g m kn' L (VGS VT ) 1.6mA / V VDS 3.1 1.5 1.6V V0 V Vi g mVi 0 ' RG RL RGV0 g m RG R ' LV R ' LVi R ' LV0 V0 R ' L g m RG R ' L R ' L (1 g m RG ) 5.7V / V Vi R'L C R ' L RG R0 5.6 K // RG 5.6 K V i R ' L (1 g m RG ) V0 Vi R ' L RG Ri Vi V0 1 R ' L (1 g m RG ) i 1 RG RG R ' L RG 1 gm R'L i ' R L RG R ' L RG Ri 148 K 1 gm R'L MOSFET Common Source amplifier VT 1V 1 ' W kn 2 L 2 0.5mA / V I D 0.5mA VA 200V VG 5V ,VD 7V ,VS 3V VDS VGS VT 1V (edge of saturation) Max. Output swing when VDS 5.5V Swing =4.5V r0 | VA | 200 400 K ID 0.5mA W g m kn' L 2 (VGS VT ) 1(1) 1mA / V AV g m RD // RL // r0 (1)(3) 3V / V Ri 10 M // 10 M 5M Rout r0 // RD 6k Low compared with CE amplifier Very very high compared with BJT output resistance.