Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2007-12-07 九十六學年度國立中山大學應用數學系統計組推薦甄試試題 1 of 3 注意事項: 1. 本試卷共六大題,每大題10分。 2. 考試時間: 10:00-11:30。 3. 請將姓名及報名編號寫在每頁頁尾指定處。 4. 請詳列計算過程書寫於題目下方空白處,並將答案書寫於右下方指定處。 1. Let Qn denote the probability that no run of 3 consecutive heads in n tosses of a fair coin. Show that 1 1 1 Qn−1 + Qn−2 + Qn−3 2 4 8 = Q1 = Q2 = 1 Qn = Q0 Find Q8 . 解答: Condition on when the first tail occurs. Let Ai denote that the first tail appears in the ith toss. Then Qn = 3 X P {no run of 3 consecutive heads appears|Ai }P {Ai } i=1 = Q8 = 1 1 1 Qn−1 + Qn−2 + Qn−3 2 4 8 149 256 2. One thousand independent rolls of a fair die will be made. Compute an approximation to the probability that number 6 will appear between 150 and 200 times inclusively. If number 6 appears exactly 200 times, find the probability that number 5 will appear less than 150 times. 解答: (a) Let Xi = 1 if the outcome is 6 and 0 otherwise, i = 1, 2, . .P . , 1000. Then Xi ’s are iid Bernoulli distribution with probability 1/6. Let X = 1000 i=1 be B(1000, 1/6). Note that E[X] = (1000)(1/6) = 500/3 and Var(X) = (1000)(1/6)(5/6) = p 1250/9. An application of Central Limit Theorem gives that (X−E[X])/ Var(X) ≈ N (0, 1). Thus 149.5 − 1000 1000 200.5 − 6 6 q P {149.5 < X < 200.5} = P <Z< q 1000 16 56 1000 61 56 ! ! 200.5 − 166.7 149.5 − 166.7 p p = Φ −Φ 5000/36 5000/36 ≈ Φ(2.87) + Φ(1.46) − 1 = .9258. 姓名: 編號: 2007-12-07 2 of 3 九十六學年度國立中山大學應用數學系統計組推薦甄試試題 (b) Let Y denote the frequency of number 5 given that number 6 appears exactly 200 times. Then Y |X = 200 ∼ B(800, 1/5). Note that E[Y |X = 200] = (800)(1/5) = 160 and Var(Y |X = 200) = (800)(1/5)(4/5) = 128. An application p of Central Limit Theorem gives that ((Y |X = 200) − E[Y |X = 200])/ Var(Y |X = 200) ≈ N (0, 1). Thus 149.5 − 800(1/5) q P {X < 149.5} = P Z < 800 1 4 55 = P {Z < −.93} = 1 − Φ(.93) = .1762. 3. Consider the jointly distributed random variables X, Y with finite second moments and positive variance. Find the values α̂ and β̂ for which E[Y − (αX + β)]2 is minimized. ∂ 解答: Set g(α, β) = E[Y − (αX + β)]2 , and solve for ∂α g(α, β) = 0 and to obtain σ(Y ) β̂ = E(Y ) − α̂E(X), α̂ = ρ(X, Y ). σ(X) And show that ∂2 g(α, β) ∂α2 > 0 and ∂2 ∂2 g(α, β) ∂β 2 g(α, β) ∂α2 ∂ g(α, β) ∂β =0 2 ∂ − ( ∂αβ g(α, β))2 > 0. 4. Let X1 , X2 , . . . , Xn be i.i.d. U (0, 1) random variables. And let Yj denote the jth order statistic of X1 , X2 , . . . , Xn . Find the probability density function of Y = Yn − Y1 . 解答: The joint density of Y1 and Yn is n(n − 1)(yn − y1 )n−2 , 0 < y1 < yn < 1, g1n (y1 , yn ) = 0, otherwise. Set Y = Yn − Y1 and = Y1 , then Y1 = Z and Yn = Y + Z, and thus |J| = 1. R 1−yZ n−2 fY (y) = n(n − 1) 0 y dz, 0 < y < 1; that is n(n − 1)y n−2 (1 − y), 0 < y < 1 fY (y) = 0, otherwise. 5. Suppose U1 , U2 , . . . are independent uniform (0, 1) random variables, and let N be the first n ≥ 2 such that Un > Un−1 . For 0 ≤ u ≤ 1 : (i) show that P (U1 ≤ u and N = 2) = u − u2 /2; (ii) also show that P (U1 ≤ u and N = n) = un−1 (n−1)! − un , n! n ≥ 2; (iii) find P (N = n), and show E(N ) = e. 解答: RuR1 du2 du1 = 1/2 − (1 − u)2 /2 = u − u2 /2; RuRu Ru R1 (ii) P (U1 ≤ u and N = n) = 0 0 1 · · · 0 n−2 un−1 dun dun−1 · · · du1 = un , n ≥ 2; n! (i) P (U1 ≤ u and N = 2) = 姓名: 0 u1 編號: un−1 (n−1)! − 2007-12-07 九十六學年度國立中山大學應用數學系統計組推薦甄試試題 1 (iii) P (N = n) = (n−1)! − n!1 , n ≥ 2; P P∞ P∞ 1 n−1 )= ∞ E(N ) = n=2 n( n!1 − (n+1)! n=2 n n! = n=2 1 (n−2)! 3 of 3 = e. 6. Suppose X1 , . . . , Xn are independent exponential E(λ), λ > 0 random variables. (i) Find the maximum likelihood estimate (MLE) of λ and its corresponding distribution; (ii) Find an UMVUE estimate of λ based on the MLE found above, and see if it achieves the Cramer-Rao lower bound. 解答: The density of Xi is f (x) = λ e−λ x for x > 0. The log-likelihood function is `(λ|x1 , . . . , xn ) = n log λ − λ n X xi , i=1 then n 1 n X xi ⇒ λ̂ = . ` (λ|x1 , . . . , xn ) = − λ i=1 X̄ 0 P Note that Note that E(λ) distribution is Gamma(1; λ). Then, ni=1 Xi follows Gamma(n, λ) distribution and so X̄ ∼ Gamma(n; nλ), where the density is fX̄ (x) = Then (nλ)n n−1 −nλx x e , x > 0. Γ(n) 1 nλ E = , n−1 X̄ thus λ̂ is biased but T = n−1 λ̂ n is unbiased. Since can be computed as !2 " 2 # n X n d log `(λ|x1 , . . . , xn ) n E =E − Xi = 2 . dλ λ i=1 λ the Cramer-Rao lower bound is λ2 . n E (T − λ)2 = E Now consider " n−1 λ̂ − λ n 2 # = λ2 , n−2 which is greater than the CR lower bound and this is the UMVUE, the CR lower bound can not be obtained. 姓名: 編號: