Download Slides: IGCSE Further Maths - Trigonometry I

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IGCSE FM Trigonometry
Dr J Frost ([email protected])
Objectives: (from the specification)
Last modified: 18th April 2016
Sin Graph
What does it look like?
-360
-270
-180
-90
?
90
180
270
360
Sin Graph
What do the following graphs look like?
-360
-270
-180
-90
90
180
270
Suppose we know that sin(30) = 0.5. By thinking about symmetry in the graph,
how could we work out:
sin(150) = 0.5?
sin(-30) = -0.5?
sin(210) = -0.5
?
360
Cos Graph
What do the following graphs look like?
-360
-270
-180
-90
?
90
180
270
360
Cos Graph
What does it look like?
-360
-270
-180
-90
90
180
270
Suppose we know that cos(60) = 0.5. By thinking about symmetry in the graph,
how could we work out:
cos(120) = -0.5
?
cos(-60) = 0.5?
cos(240) = -0.5
?
360
Tan Graph
What does it look like?
-360
-270
-180
-90
?
90
180
270
360
Tan Graph
What does it look like?
-360
-270
-180
-90
90
180
270
Suppose we know that tan(30) = 1/√3. By thinking about symmetry in the
graph, how could we work out:
tan(-30) = -1/√3
?
tan(150) = -1/√3
?
360
Solving Trig Equations
Solve sin π‘₯ = 0.6 in the range 0 ≀ π‘₯ < 360
𝒙 = π¬π’π§βˆ’πŸ 𝟎. πŸ” =?πŸ‘πŸ”. πŸ–πŸ•°, πŸπŸ’πŸ‘.?πŸπŸ‘°
Angle Law #1:
𝐬𝐒𝐧 𝒙 = 𝐬𝐒𝐧(πŸπŸ–πŸŽ βˆ’ 𝒙)
0.6
-360
-270
-180
-90
?
πŸ‘πŸ”. πŸ–πŸ•°
90
180
270
360
Solving Trig Equations
Solve 3cos π‘₯ = 2 in the range 0 ≀ π‘₯ < 360
2
cos π‘₯ =?
3
𝟐
βˆ’πŸ
𝒙 = 𝒄𝒐𝒔
= ?πŸ’πŸ–. πŸπŸ—°, πŸ‘πŸπŸ.?πŸ–πŸ°
πŸ‘
Angle Law #2:
𝒄𝒐𝒔 𝒙 = 𝒄𝒐𝒔(πŸ‘πŸ”πŸŽ βˆ’ 𝒙)
𝟐
πŸ‘
-360
-270
-180
-90
πŸ’πŸ–. πŸπŸ—°
90
?
180
270
360
Solving Trig Equations
Solve sin π‘₯ = βˆ’0.3 in the range 0 ≀ π‘₯ < 360
𝒙 = π¬π’π§βˆ’πŸ βˆ’πŸŽ. πŸ‘ = βˆ’πŸπŸ•.
? πŸ’πŸ”°, πŸπŸ—πŸ•. πŸ’πŸ”°,?πŸ‘πŸ’πŸ. πŸ“πŸ’
Angle Law #3:
Sin and cos repeat every 360°
βˆ’πŸπŸ•. πŸ’πŸ”°
-360
-270
-180
-90
90
-0.3
?
180
?
270
360
Laws of Trigonometric Functions
!
sin π‘₯ = sin 180?βˆ’ π‘₯
cos π‘₯ = cos 360?βˆ’ π‘₯
?
sin and cos repeat every 360°
?
tan repeats every 180°
Test Your Understanding
Solve cos π‘₯ = 0.9 in the range 0 ≀ π‘₯ < 360
π‘₯ = cos βˆ’1 0.9 = πŸπŸ“. πŸ–πŸ’°
?
360 βˆ’ 25.84° = πŸ‘πŸ‘πŸ’. πŸπŸ”°
Solve tan π‘₯ = 1 in the range 0 ≀ π‘₯ < 360
π‘₯ = tanβˆ’1 1 = πŸ’πŸ“°
?
45° + 180° = πŸπŸπŸ“°
Set 4 Paper 2 Q14
sin πœƒ = βˆ’0.68 β†’ πœƒ = βˆ’42.84°
? = 𝟐𝟐𝟐. πŸ–πŸ’°
180 βˆ’ βˆ’42.84
βˆ’42.84 + 360 = πŸ‘πŸπŸ•. πŸπŸ”°
Exercise 1
1
Solve the following in the range 0 ≀ π‘₯ ≀ 360
a
sin π‘₯ = 0.5 β†’ 𝒙 = πŸ‘πŸŽ°,?πŸπŸ“πŸŽ°
3
b
cos π‘₯ =
β†’ 𝒙 = πŸ‘πŸŽ°, πŸ‘πŸ‘πŸŽ°
?
2
c tan π‘₯ = 3
?
β†’ 𝒙 = πŸ”πŸŽ°, πŸπŸ’πŸŽ°
β†’ 𝒙 = πŸ“. πŸ•πŸ’°, πŸπŸ•πŸ’.
d sin π‘₯ = 0.1
? πŸπŸ”°
e
4 cos π‘₯ = 3 β†’ πŸ’πŸ. πŸ’πŸ°,?πŸ‘πŸπŸ–. πŸ“πŸ—°
6 tan π‘₯ = 5 β†’ πŸ‘πŸ—. πŸ–πŸ°,?πŸπŸπŸ—. πŸ–πŸ°
f
sin π‘₯ = 0.4 β†’ πŸπŸ‘. πŸ“πŸ–°,?πŸπŸ“πŸ”. πŸ’πŸ°
g
2
Solve the following in the range 0 ≀ π‘₯ ≀ 360
a sin πœƒ = βˆ’0.5 β†’ 𝟐𝟏𝟎°, πŸ‘πŸ‘πŸŽ°
?
b cos πœƒ = βˆ’0.5 β†’ 𝟏𝟐𝟎°, πŸπŸ’πŸŽ°
?
c tan πœƒ = βˆ’1
β†’ πŸπŸ‘πŸ“°, πŸ‘πŸπŸ“°
?
d sin πœƒ = βˆ’0.4 β†’ πŸπŸŽπŸ‘. πŸ“πŸ–°,?πŸ‘πŸ‘πŸ”. πŸ’πŸ°
e cos πœƒ = βˆ’0.7 β†’ πŸπŸ‘πŸ’. πŸ’°, πŸπŸπŸ“. πŸ”°
?
f tan πœƒ = βˆ’0.2 β†’ πŸπŸ”πŸ–. πŸ”πŸ—°,?πŸ‘πŸ’πŸ–. πŸ”πŸ—°
Trigonometric Identities
1
Using basic trigonometry to find
these two missing sides…
sin?πœƒ

cos?
1
2
Then 𝒕𝒂𝒏 𝜽 =
π’”π’Šπ’ 𝜽
?
𝒄𝒐𝒔 𝜽
Pythagoras gives
you...
These two identities are all
you will need for IGCSE FM.
π’”π’Šπ’πŸ 𝜽 + π’„π’π’”πŸ 𝜽 = 𝟏
?
sin2 πœƒ is a shorthand for sin πœƒ 2 . It does NOT mean
the sin is being squared – this does not make sense
as sin is not a quantity that we can square!
Application #1: Solving Harder Trig Equations
Solve sin π‘₯ = 2 cos π‘₯ in the range 0 ≀ π‘₯ < 360°
The problem here is that we have two different trig functions. Is there
anything we could divide by to get just one trig function?
sin π‘₯ 2 cos π‘₯
=?
cos π‘₯
cos π‘₯
tan π‘₯? = 2
π‘₯ = 63.43°,
? 243.43°
Bro Tip: In general, when you have a
mixture of sin and cos, divide
everything by cos.
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
Test Your Understanding
Solve 2 s𝑖𝑛 π‘₯ = cos π‘₯ in the range 0 ≀ π‘₯ < 360°
2 tan π‘₯ = 1
1
tan π‘₯ = ?
2
π‘₯ = 26.57°, 206.57°
Solve cos π‘₯ = sin π‘₯ in the range 0 ≀ π‘₯ < 360°
1 = tan π‘₯
π‘₯ = 45°, 225°
?
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
Application #1: Solving Harder Trig Equations
June 2013 Paper 2 Q22
Solve tan2 πœƒ + 3 tan πœƒ
= 0 in the range 0 ≀ π‘₯ < 360°
This looks a bit like a quadratic. What would be our usual strategy to solve!
tan πœƒ tan πœƒ + ?3 = 0
?
tan πœƒ = 0 π‘œπ‘Ÿ
πœƒ = 0, 180,
?
tan πœƒ = βˆ’3
108.43°, 288.4°
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
More Examples
Solve 2sin2 πœƒ βˆ’ sin πœƒ = 0 in the range 0 ≀ π‘₯ < 360°
sin πœƒ 2 sin πœƒ βˆ’ 1 = 0
1
sin πœƒ = 0 π‘œπ‘Ÿ? sin πœƒ =
2
πœƒ = 0, 180°, 30°, 150°
2
1
4
Solve cos πœƒ = in the range 0 ≀ π‘₯ < 360°
1
1
cos πœƒ =
π‘œπ‘Ÿ cos πœƒ = βˆ’
2
2
?
πœƒ = 60°, 300°, 120°, 240°
Test Your Understanding
Solve cos 2 πœƒ + cos πœƒ = 0 in the range 0 ≀ π‘₯ < 360°
cos πœƒ cos πœƒ + 1 = 0
cos πœƒ = 0 π‘œπ‘Ÿ? cos πœƒ = βˆ’1
πœƒ = 90°, 270°, 180°
Expand and simplify (2𝑠 + 1)(𝑠 βˆ’ 1). Hence or otherwise, solve
2 sin2 πœƒ βˆ’ sin πœƒ βˆ’ 1 = 0 for 0° ≀ πœƒ < 360°
2 sin πœƒ + 1 sin πœƒ βˆ’ 1 = 0
1
sin πœƒ = βˆ’ π‘œπ‘Ÿ
? sin πœƒ = 1
2
πœƒ = 210°, 330°, 90°
Exercise 2
1 Solve the following in the range
0° ≀ π‘₯ < 360°
a sin πœƒ = 3 cos πœƒ
? πŸ“πŸ•°
β†’ 𝜽 = πŸ•πŸ. πŸ“πŸ•°, πŸπŸ“πŸ.
b 2 sin πœƒ = 3 cos πœƒ β†’ 𝜽 = πŸ“πŸ”. πŸ‘πŸ°, πŸπŸ‘πŸ”.
? πŸ‘πŸ°
2
a
b
c
Solve the following by first factorising. 0° ≀ π‘₯ < 360°
cos 2 πœƒ βˆ’ cos πœƒ = 0
β†’ 𝜽 = πŸ—πŸŽ, πŸπŸ•πŸŽ, 𝟎?
tan2 πœƒ βˆ’ 3 tan πœƒ = 0
β†’ 𝜽 = 𝟎, πŸπŸ–πŸŽ, πŸ•πŸ. ?
πŸ“πŸ•, πŸπŸ“πŸ. πŸ“πŸ•°
sin π‘₯ cos π‘₯ + sin π‘₯ = 0 β†’ 𝜽 = 𝟎°, πŸπŸ–πŸŽ° ?
3 Solve the following: 0° ≀ π‘₯ < 360°
3
β†’ 𝜽 = πŸ”πŸŽ°, 𝟏𝟐𝟎°,?πŸπŸ’πŸŽ°, πŸ‘πŸŽπŸŽ°
a sin2 πœƒ = 4
3
b cos 2 πœƒ =
β†’ 𝜽 = πŸ‘πŸŽ°, πŸπŸ“πŸŽ°, ?
𝟐𝟏𝟎°, πŸ‘πŸ‘πŸŽ°
4
β†’ 𝜽 = πŸ”πŸŽ°, 𝟏𝟐𝟎°, ?
πŸπŸ’πŸŽ°, πŸ‘πŸŽπŸŽ°
c tan2 πœƒ = 3
4
a
b
N
By factorising these β€˜quadratics’, solve in the range 0 ≀ π‘₯ < 360
3 cos 2 πœƒ + 2 cos πœƒ βˆ’ 1 = 0 β†’ 𝜽 = πŸ•πŸŽ. πŸ“πŸ‘°, πŸπŸ–πŸŽ°,
? πŸπŸ–πŸ—. πŸ’πŸ•°
6 sin2 πœƒ βˆ’ sin πœƒ βˆ’ 1 = 0
β†’ 𝜽 = πŸ‘πŸŽ°, πŸπŸ“πŸŽ°, πŸπŸ—πŸ—.
? πŸ’πŸ•°, πŸ‘πŸ’πŸŽ. πŸ“πŸ‘°
sin πœƒ cos πœƒ + sin πœƒ + cos πœƒ = βˆ’1 β†’ 𝐬𝐒𝐧 𝜽 + 𝟏 𝐜𝐨𝐬 𝜽 + 𝟏 ?
= 𝟎 β†’ 𝜽 = πŸπŸ–πŸŽ°, πŸπŸ•πŸŽ°
Review of what we’ve done so far
οƒΌ
οƒΌ
partly
οƒΌ
Application of identities #2: Proofs
Prove that 1 βˆ’ tan πœƒ sin πœƒ cos πœƒ ≑ cos 2 πœƒ
Recall that ≑ means
β€˜equivalent to’, and just
means the LHS is always
equal to the RHS for all
values of πœƒ.
sin πœƒ
𝐿𝐻𝑆 = 1 βˆ’
sin πœƒ cos πœƒ
cos πœƒ ?
sin2 πœƒ π‘π‘œπ‘ πœƒ
?
=1βˆ’
cos πœƒ
2
= 1 βˆ’ sin πœƒ ?
= cos 2 πœƒ = 𝑅𝐻𝑆
?
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
𝐬𝐒𝐧 𝒙
We want to use
these…
A. 𝐭𝐚𝐧 𝒙 = 𝐜𝐨𝐬 𝒙
B. 𝐬𝐒𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 = 𝟏
Another Example
June 2012 Paper 1 Q16
Prove that tan πœƒ +
𝐿𝐻𝑆 =
1
tan πœƒ
≑
1
sin πœƒ cos πœƒ
sin πœƒ cos πœƒ
+
cos πœƒ ?
sin πœƒ
sin2 πœƒ
cos 2 πœƒ
=
+
sin πœƒ cos πœƒ ?sin πœƒ cos πœƒ
sin2 πœƒ + cos 2 πœƒ
=
?πœƒ
sin πœƒ cos
1
=
= 𝑅𝐻𝑆
sin πœƒ cos πœƒ?
Bro Tip: Whenever you
have a fraction in a proof
question, always add the
fractions.
Test Your Understanding
Prove that
tan π‘₯ cos π‘₯
1βˆ’cos2 π‘₯
≑1
sin π‘₯
cos π‘₯ sin π‘₯
cos
π‘₯
=
=?
=1
2
sin
π‘₯
sin π‘₯
AQA Worksheet
Prove that tan2 πœƒ ≑
1
cos2 πœƒ
βˆ’1
tan2 πœƒ
sin2 πœƒ
=
cos 2 πœƒ
1 βˆ’ cos 2 πœƒ
=?
cos 2 πœƒ
1
cos 2 πœƒ
=
βˆ’
cos 2 πœƒ cos 2 πœƒ
Exercise 3
1 Simplify 3 sin π‘₯ sin π‘₯ + 2 βˆ’ 3 2 sin π‘₯ βˆ’ cos 2 π‘₯
= πŸ‘ 𝐬𝐒𝐧𝟐 𝒙 + πŸ” 𝐬𝐒𝐧 𝒙 βˆ’ πŸ” 𝐬𝐒𝐧 𝒙 + πŸ‘ 𝐜𝐨𝐬 𝟐 𝒙
?πŸ‘
= πŸ‘ 𝐬𝐒𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 =
2 Write out the following in terms of sin π‘₯:
2
2
a) cos π‘₯ tan π‘₯
b) tan π‘₯ cos 3 π‘₯
c)
cos π‘₯ 2 cos π‘₯
𝐬𝐒𝐧𝟐 𝒙
= 𝒄𝒐𝒔 𝒙 𝐜𝐨𝐬𝟐 𝒙 = 𝐬𝐒𝐧𝟐 𝒙
𝐬𝐒𝐧 𝒙
= 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 πŸ‘ 𝒙 = 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝟐 𝒙 =
βˆ’ 3 tan π‘₯ = 𝟐 𝐜𝐨𝐬 𝟐 𝒙 βˆ’ πŸ‘ 𝐬𝐒𝐧 𝒙
𝟐
?
?
3 Prove the following:
a. tan π‘₯ 1 βˆ’ sin2 π‘₯ ≑ sin π‘₯
b.
c.
d.
e.
f.
1βˆ’cos2 π‘₯
1βˆ’sin2 π‘₯
≑ tan2 π‘₯
1 + sin π‘₯ 1 βˆ’ sin π‘₯ ≑ cos 2 π‘₯
2 sin π‘₯ cos π‘₯
2π‘₯
≑
2
βˆ’
2
sin
tan π‘₯
1
cos πœƒ
βˆ’ cos πœƒ ≑ sin πœƒ tan πœƒ
2 sin πœƒ βˆ’ cos πœƒ 2 + sin πœƒ + 2 cos πœƒ
2
≑5
𝐬𝐒𝐧 𝒙 𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙
=𝟐?
𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙 βˆ’ πŸ‘ 𝐬𝐒𝐧 𝒙
sin/cos/tan of 30°, 45°, 60°, 90°
You will frequently encounter angles of 30°, 60°, 45° in geometric problems. Why?
We see these angles in equilateral triangles and right-angled isosceles triangles.
?
You need to be able to calculate these in non-calculator exams.
All you need to remember:
! Draw half a unit square and half an equilateral triangle of side 2.
?2
?1
45°
?
1?
sin 45° =
cos 45° =
1
?
2
1
tan 45° = 1
30°
?
?2
?
1
?
2
3
= ?
2
1
= ?
3
3
= ?
2
1
= ?
2
= ?
3
sin 30° =
2?
tan 30°
?3
For 0°, 90° just think about the graphs of trig
functions:
sin 0° = 0 ? sin 90° = 1 ?
cos 0° = 1 ? cos 90° = 0 ?
tan 0° = 0 ?
cos 30°
60°
?
1?
sin 60°
cos 60°
tan 60°
Example Exam Questions
? Mark Scheme
Using triangles to change between sin/cos/tan
3
Given that sin πœƒ = and that πœƒ is
5
acute, find the exact value of:
πŸ’
a) cos πœƒ = ?
b) tan πœƒ =
πŸ“
πŸ‘
πŸ’
?
?5
?3
Represent as
a triangle
πœƒ
4
Test Your Understanding
1
5
13
Given that cos πœƒ = and that
πœƒ is acute, find the value of:
𝟏𝟐
a) sin πœƒ = ?
b) tan πœƒ
πŸπŸ‘
𝟏𝟐
= ?
πŸ“
2
5
Given that tan πœƒ = and that
2
πœƒ is acute, find the value of:
a) sin πœƒ =
b) cos πœƒ =
πŸ“
?
πŸ‘
𝟐
?
πŸ‘
Related documents