Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Intensive Actuarial Training for Bulgaria January 2007 Lecture 0 – Review on Probability Theory By Michael Sze, PhD, FSA, CFA Topics Covered • • • • • Some definitions and properties Moment generating functions Some common probability distributions Conditional probability Properties of expectations Some Definitions and Properties • Cumulative distribution function F(x) – – – – F is non-decreasing: a < b F(a) < F(b) Limb F(b) = 1 Lima - F(a) = 0 F is right continuous:bnb LimnF(bn) = b • E[X] = x p(x) = , where p(x) = P(X = x) – – – – – E[g(x)] = i xi g(xi) p(xi) E[aX + b] = a E[X] + b E[X2] = i xi2 p(xi) Var(X) = E[(X - )2] = E[X2] – (E[X])2 Var(a X + b) = a2 Var (X) Moment Generating Functions • Definition: mgf MX(t) = E[e t x] • Properties: – – – – – – There is a 1 – 1 correspondence between f(x) and MX(t) X, Y independent r.v. MX+Y(t)=MX(t).MY(t) X1 ,…,Xn indep. M i xi (t)= i Mxi(t) mgf for f1 + f2 + f3 = Mx1 (t) + Mx2 (t) + M x3 (t) M’X(0) = E[X] M(n)X(0) = E[Xn] Some Common Discrete Probability Distributions • Binomial random variable (r.v.) with parameters (n, p) • Poisson r.v. with parameter • Geometric r.v. with parameter p • Negative binomial r.v. with parameter (r, p) Some Common Continuous Probability Distributions • • • • Uniform r.v. on (a, b) Normal r.v. with parameter (, 2) Exponential r.v. with parameter Gamma r.v. with parameters (t, ), t, > 0 Binomial r.v. B(n, p) • • • • • • n is integer, 0 p 1 Probability of getting i heads in n trials p(i) = nCi pi qn – i E[X] = n p Var(X) = n p q MX (t) = (p et + q)n Poisson r.v. with parameter • > 0, the expected number of events • Poisson is good approximation of binomial for large n, small p, and not too big np • np • p(i) = P(X = i) = e - x (i / i!) • E[X] = Var(X) = • MX (t) = exp [ (et - 1) ] Geometric r.v with parameter p • 0 p 1, probability of success in one trial • Geometric r.v. is used to study the probability of getting the success in n trials • p(n) = P(X = n) = qn - 1 p • E[X] = 1/p • Var(X) = q / p2 . • MX (t) = p et / ( 1 - q et ) Negative Binomial r.v. with parameter r, p • p = probability of success in each trial • r = number of successes wanted • Negative binomial r.v. is used to study the probability of getting first r successes in n trials • p(n) = P(X = n) = n - 1Cr - 1 qn - r pr . • E[X] = r / p • Var(X) = r q / p2 • MX (t) = [p et / ( 1 - q et )]r Uniform r.v. on (a, b) • a<x<b • f(x) = 1 / (b – a) for a < x < b 0 otherwise • F(c) = (c – a) / (b – a) for a < x < b 0 otherwise • E[X] = (a + b) / 2 • Var(X) = (b – a)2 / 12 • MX (t) = (etb - eta) / [t (b - a)] Normal r.v. with parameters (, 2) • By central limit theorem, many r.v. can be approximated by a normal distribution • f(x) = [1/(22)] exp [ - (x - )2 / 22] • E[X] = • Var(X) = 2 . • MX (t) = exp [ t + 2 t2 /2 ] Exponential r.v. with parameter • >0 • Exponential r.v. X gives the amount of waiting time until the next event happens • X is memoryless: P(X>s+t|X>t) = P(X>s) for all s, t0 • f(x) = e - x. for x 0, 0 otherwise • F(a) = 1 - e - a • E[X] = 1 / • Var(X) = 1 / 2 • MX (t) = / ( - t ) Gamma r.v. with parameters (s, ) • s, > 0 • Exponential r.v. X gives the amount of waiting time until the next s events happen • f(x) = e - x (x)s – 1 / (t) for x 0, 0 otherwise • (s) = 0 e - y ys – 1 dy • (n) = (n – 1)! , (1) = (0) = 1 • E[X] = s / • Var(X) = s / 2 • MX (t) = [ / ( - t )] s Conditional Probability • Definition:For P(F)>0, P(E|F) = P(EF)/P(F) • Properties: – For A1,…,An,whereAiAj = for ij (exclusive), and Ai = S(exhaustive), then P(B) = i P(B|Ai ) P(Ai) – Baye’s Theorem: For P(B)>0, P(A|B) = [P(B|A).P(A)]/P(B) – E[X|A] = i xi P(xi |A) – E[X| Ai ] = i E(X|Ai) P(Ai) Properties of Expectation • E[X + Y] = E[X] + E[Y] • E[i Xi ] = i E[Xi ] • If X,Y are independent, then E[g(X) h(Y)] = E[g(X)] E[h(Y)] • Def.: Cov(X,Y) = E[(X-E[X])(Y-E[Y])] • Cov(X,Y) = Cov(Y,X) • Cov(X,X) = Var(X) • Cov(aX,Y) = a Cov(X,Y) Properties of Expectation(continued) • Cov(i Xi, jYj) = i j Cov(Xi,Yj) • Var(i Xi) = iVar(Xi) + ij Cov(Xi,Yj) • If SN = X1+…+XN is a compound process – Xi are mutually independent, – Xi are independent of N, and – Xi have the same distribution, then E[SN] = i E[Xi] Var(SN) = E[N] Var(X) + Var(N) (E[X])2