Download 1 - Mu Alpha Theta

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mu Alpha Theta National Convention: Hawaii, 2005
Complex Numbers Topic Test – Alpha Division
1.
A root of a polynomial function is also the x-coordinate of an x-intercept of the function’s
graph (on the Cartesian plane) if and only if the root is ______.
A) complex
2.
E) NOTA
D) 5  3i
E) NOTA
C) 5  9i
B) II
C) III
D) IV
E) NOTA
B) 1
C)  i
D) i
E) NOTA
D) 12
E) NOTA
D) e
E) NOTA
B) 3
C) 4
Which of the following is a value of i i ?

2

B) ie 
C) ie 2
Which of the following expresses the number 2i  2 in polar form?
A) 2cis
9.
D) i
Let x12  i 3 . How many distinct values of x exist?
A) e
8.
C)  i
Evaluate: i 47118
A) 1
7.
B) 1
In which quadrant of the real-imaginary plane does (2i ) lie?
A) –1
6.
E) NOTA
B) 1  3i
A) I
5.
D) real
Let x  3  6i and y  2  3i . What is ( x  y ) ?
A) 1  9i
4.
C) rational
Evaluate: (i 3 )
A) –1
3.
B) integral

4
B) 2 2 cis

4
C) 2cis
3
4
D) 2 2 cis
3
4
E) NOTA
A ray with an endpoint at the origin of the real-imaginary plane passes through the point
(2  2i ) . Another ray with the same endpoint passes through the point (2  2i 3) . Which
of the following is the measure of the angle formed by the two rays?
A) 45
B) 75
C) 90
Page 1 of 5
D) 105
E) NOTA
Mu Alpha Theta National Convention: Hawaii, 2005
Complex Numbers Topic Test – Alpha Division
10. The polynomial h( x)  8x3  4 x 2  18x  9 has three distinct roots. What is the sum of the
squares of the real components of each of these roots?
A) 0
B)
1
4
C)
9
2
D)
19
4
E) NOTA
11. Let z  cis(3 ) , where 0    2 . Which of the following is equivalent to z 3 for all
values of  ?
A)  cis(3 )
B) cis(6 )
  i 
4
12. Evaluate:
n 0
A) –1
n
C) cis(9 )
D) cis(27 )
E) NOTA
C) 1
D) 1  i
E) NOTA
D) 2i
E) NOTA

B) 0
13. If f ( x, y )  y  xi , evaluate f (1, i) .
C) 1  i
B) 2
A) 0
14. The number
3  2i
can be expressed as a fraction with a real denominator in the form
1  4i
a  bi
, where c is positive; and a, b, and c are integers that are groupwise relatively prime.
c
What is (a  b  c) ?
A) –2
B) 14
C) 18
D) 34
E) NOTA
C)  i
D) i
E) NOTA
997
15. Evaluate:
A) –1
 i 
4n
n 1
B) 1
16. Let z  (2  i ) . Express
3
z
1
2
in the form a  bi , where a and b are rational, and find
2a  4b .
A) 9
B) 12
C) 18
Page 2 of 5
D) 24
E) NOTA
Mu Alpha Theta National Convention: Hawaii, 2005
Complex Numbers Topic Test – Alpha Division
17. In the quadratic equation y  kx 2  4kx  4 , k is an integer. For what value of k does this
equation have exactly one distinct real root?
A) –2
B) –1
C) 1
D) 2
E) NOTA
18. The leg adjacent to angle  in a right triangle measures half the hypotenuse. What is the

value of (i csc ) 2 , if   ?
2
A) 4
B) 
4
3
C)
4
3
D) 4
E) NOTA
19. Let  be half the sum of the interior angles of a convex heptagon. Evaluate:
(cot   i sin  )
A)  i
B) i
C)
2i 2
2
D)
2  i  1
2
E) NOTA
20. For all real values of  , which of the following is the equivalent of cis ?


A)  cis     B)  cis
2



C)  cis     D)  cis    
2

E) NOTA
21. Let f ( z)  z z 2i . What is f (3  4i) ?
A) 100  75i
B) 120  35i
C) 120 125i
D) 125 120i
E) NOTA
D) 2 10i
E) NOTA
 2i 1 i 
22. Evaluate the determinant of the matrix.  2
i 2i 

 2 1
i 
A) 2  6i
B) 2  2i
C) 2  6i
23. The expansion of (1  2i)5 can be expressed simply as a  bi , where a and b are real. What
is the value of b ?
A) 12
B) 21
C) 36
Page 3 of 5
D) 38
E) NOTA
Mu Alpha Theta National Convention: Hawaii, 2005
Complex Numbers Topic Test – Alpha Division
24. If f ( x)  1  x and g ( x)  x 2  1 , how many of the following four expressions have real
values?
  1 
f  g  
  2 
A) 1
  3 
f  g  
  2 
B) 2

g

 1 
f  
 2 
C) 3

g

 3 
f  
 2 
D) 4
E) NOTA
25. Let a and b be real numbers such that 0  a  b . Which is the conjugate of
A) a  b i
B) a  b i
C) a  b i
D) a  b i
 a  bi  ?
E) NOTA
26. Let f ( x)  ax5  bx 4  cx 2  2 , where a, b, and c are positive integers. If f ( x ) is never
tangent to the x-axis, how many real roots does f ( x ) have?
A) 0
27. Let m 
A) m
B) 1
C) 2
D) 5
E) NOTA
 1 i 3 
. Which of the following expressions is a value of ln 
 ?
6
 2 
i
B) 2m
C) 4m
D) 5m
E) NOTA
28. What is the probability that h(k ) is real, if h( x) is a function selected at random from the


 x
set  e x , cis   , ( xi)3  and k is a value selected at random from the set
2


  , 2 ,  i , 2 i  ?
A)
1
2
B)
7
12
C)
2
3
D)
3
4
E) NOTA


cos  3   sin(6 )cos  3  
2

29. If each solution to the equation
 0 is substituted into the
3
4cos ( )  3cos( )
expression  5cis   , all resultant numbers are N th roots of the complex number Z, where N
is a whole number. What is the units digit of the least possible positive value of N?
A) 2
B) 4
C) 6
Page 4 of 5
D) 8
E) NOTA
Mu Alpha Theta National Convention: Hawaii, 2005
Complex Numbers Topic Test – Alpha Division
30. The complex number cis( M ) , where sin  2M   0 , is a root of the cubic polynomial
function g ( x)  ax3  bx 2  cx  d , where {a, b, c, d} 
c
of the following is equal to ?
a
A) 5  2cos  M 
B) 1  10cos( M )
C) cos(2M )  10cos(M )
D) 12
Page 5 of 5
. If 5 is also a root of g ( x ) , which
E) NOTA
Related documents