Download 3.2 The C.I. and Hypothesis Testing

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
53
3.2. The C.I. and Hypothesis Testing: F and
2
(I) 1   100% confidence intervals:
One sample  2 :

2
2
 n  1s , n  1s
  n21,
 n21,1
2
2

Two samples

.


 12
:
 22

s12
s12

s22
s22
,
 2
f
f n2 1, n 1,1
 n1 1, n2 1, 2
1
2
2








(II) Hypothesis testing:
One sample  2 :

n  1s 2
 
2
2
0
2
Two samples  1
 22
:
s12
f 
s22
2
 12
Summary table:
One sample
Point estimate
Classical approach
(critical values)
s
Two samples
2
s12
 n21, ,  n21,1 ,

,
2
n 1,
2
2
n 1,1
f n1 1,n2 1, , f n1 1,n2 1,1 ,
2
f n 1,n 1, , f n 1,n 1,1
1
Null distribution
(p-value)
 n21
53
s 22
2
2
1
Fn1 1,n2 1
2
2
54
ANOVA for testing the equality of k population means.
n x
k
j 1
f=
 n
k
j 1
2
j
j
j
 x
2
k  1 ~ Fk 1, n  k
T
 1 s 2j
nT  k
test for proportions of a multinomial population and for the
independence (contingency table).
k

i 1
p
m

i 1 j 1

f

f i  ei
2
~
ei
 eij 
 k21 ,
2
ij
eij
~  p 1m 1
2
Example 1:
A sample size of 12 provides a sample variance of 0.042. Test H 0 :  2  0.03
with   0.05 .
[solution:]
n  1s 2  11  0.042  15,4   2   2  19.68  not reject H .
2 
0
n 1,
11, 0.05
0.03
 02
Example 2:
Given the following talbe,
Sample Size
Sample 1
n1  15
Sample 2
n2  11
s1  0.8
s2  0.6
Sample Standard
Deviation
test H 0 :  12   22 with
  0.05 .
[solution:]
s12
2
2
s
1
1

 f14,10,0.975  f  2 
3.15 f10,14,0.025
 12
0.8 2
 not reject H 0 .
54
0.6 2  1.77  f
 f14,10,0.025  3.55
n1 1, n2 1,
2
1
55
Example 3:
The following data are from 4 different populations.
Population
1
8.2
8.7
9.4
9.2
Population
2
Population
3
7.7
8.4
8.6
8.1
8.0
6.9
5.8
7.2
6.8
7.4
Population
4
6.8
7.3
6.3
6.9
7.1
 1 ,  2 ,  3 and  4
Let
6.1
be the mean number of products of the 4
production lines. (a) Provide the ANOVA table. (b) Please test the hypothesis
H 0 : 1   2  3   4
with
  0.05 .
[solution:]
4
nj
x1  8.875, x2  8.16, x3  6.7, x4  6.88, x  7.545,   x 2j ,i  1157.89
j 1 i 1
n1  4, n2  5, n3  6, n4  5, nT  20
 x
nj
4
(a)
j 1 i 1
 n x
j
4
2
j ,i
nj
j 1 i 1
2
4
j 1
 x    x 2j ,i  nT x 2  19.35 ,
j
 x
 48.875  7.545  58.16  7.545  66.7  7.545  56.88  7.545
 15.462
2
 n
4
and
j 1
j
2
2
2
 1s 2j  19.35  15.462  3.888 .
The ANOVA table is
Source
SS
df
MS
Between
15.462
k 1  3
15.462
 5.154
3
Within
3.888
nT  k  16
3.888
 0.243
16
19.35
nT  1 19
Total
(b)Since
f  21.21  3.24  f 3,16, 0.05  f k 1, nT  k ,
55
F
5.154
0.243
 21.21
f 
,we reject
H0 .
56
Example 4:
Five observations were selected from each of three populations. The data
obtained follow.
Observation
Sample 1
Sample 2
Sample 3
1
32
30
30
26
32
30
6
44
43
44
46
48
45
4
33
36
35
36
40
36
6.5
2
3
4
5
Sample mean
Sample variance
(i) Set up the ANOVA table for this problem.
(ii) At the   0.01 level of significance, test the null hypothesis that the three
population means are equal?
[solution:]
 n x
3
j 1
j
 n
3
j 1
j
 x   530  37   545  37   536  37   570,
2
j
2
2
2
 1s 2j  4  6  4  4  4  6.5  66
Therefore,
Source
SS
DF
MS
F
Between
570
2
285
51.82
Within
66
12
5.5
Total
636
14
(ii) f  51.82  6.93  f 2,12, 0.01  reject H 0 .
Example 5:
The following are the number of wrong answers for the number of the students.
Number of
wrong
answers
0
1
2
3
Number of
the
students
21
31
12
0
Suppose X is the random variable representing the number of wrong answers.
Please test X is distributed as Binomial(3,0.25) with
56
  0.05 .
57
(Note: the distribution function for Binomial(3,0.25) is
 3
x
3 x
f x    0.25 0.75 , x  0,1,2,3. .
 x
[solutions:]
As
H0
is true, the distribution for the number of wrong answers is
 3
27
0
3
p1  P X  0  
 0
0.25 0.75  64 ,
 
 3
27
1
2
p2  P X  1  
 1
0.25 0.75  64 ,
 
 3
9
2
1
p3  P X  2   
 2
0.25 0.75  64 ,
 
 3
1
3
01
p4  P X  3  
 3
0.25 0.75  64 ,
 
n  21  31  12  0  64 , the expected numbers
Since the sample size
under
H 0 : p1 
27
27
9
1
, p2 
, p3 
, p4 
64
64
64
64
are
27
27
 27, e2  np2  64 
 27,
64
64
.
9
1
e3  np3  64 
 9, e4  np4  64 
 1,
64
64
e1  np1  64 
Therefore,
4
2  
 fk
k 1
2

21  27 

27
 3.92
 ek 
ek
2
2

31  27 

27
2

12  9

9
2

 1

1
Since
 2  3.92  7.81  32,0.05   k21, ,
we do not reject
H0 .
Example 6:
Some diet pills are supposed to cause significant weight loss. The following table
shows the results of a recent study where some individuals took the diet pills and
57
58
some did not.
Diet Pills
No Diet Pills
Total
No Weight Loss
80
20
100
Weight Loss
100
100
200
Total
180
120
300
With a 5% level of significance, test to see if losing weight is dependent on taking
the diet pills.
[solutions:]
eij
The table for the expected numbers
is
Diet Pills
No Diet Pills
Total
180  100
 60
300
120  100
 40
300
100
Weight Loss
180  200
 120
300
120  200
 80
300
200
Total
180
120
300
No Weight Loss
Thus,
p
m
  
2
i 1

f
j 1
 eij 
2
ij
eij
80  602
60

2
2

i 1
j 1
2

20  40 

40
f
 eij 
2
ij
eij
2

100  120

120
2

100  80 

80
 25
Since
 2  25  3.84  12,0.05  22121,0.05  2p1m1, , we reject
H0 .
58
Related documents