Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MEMORIU DE ACTIVITATE I Date biografice Nume: CZIBULA (ŞERBAN) Prenume: GABRIELA Data naşterii: 30 aprilie 1969 Locul naşterii: mun. Mediaş, jud. Sibiu Naţionalitatea: română Starea civilă: căsătorită Domiciliu: str. Năsăud nr. 22, ap. 105, Cluj-Napoca II Studii medii 1983 - 1987 Studiile liceale la Liceul de Matematică-Fizică “Axente Sever” Mediaş, absolvit cu examen de bacalaureat cu media 10 1975 - 1983 Clasele primare şi gimnaziul la Şcoala Generală nr. 5, Mediaş, jud. Sibiu III Studii universitare 1 Martie 2003 susţinerea publică a tezei de doctorat “Tehnici de realizare a Sistemelor Inteligente”, coducător ştiinţific prof. dr. MILITON FRENŢIU doctor în Informatică, distincţia “cum laude” 1998 - 2003 Stagiul de pregătire în cadrul studiilor de doctorat la Facultatea de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca 1987 - 1992 Studii superioare la secţia de informatică a Facultăţii de Matematică, Universitatea “Babeş-Bolyai” Cluj-Napoca; am absolvit facultatea cu diplomă de merit, cu media anilor de studii 9.98 şi cu media 10 la examenul de licenţă IV Activitatea ştiinţifică în timpul studiilor În timpul gimnaziului şi liceului am participat la olimpiadele de matematică şi fizică. La marea majoritate dintre ele am ajuns la faza judeţeană, unde am ocupat de mai multe ori locuri între I şi III. Am activat în cadrul cercului de matematică al elevilor. În timpul facultăţii am participat cu rezultate bune la Concursuri de Programare. V Activitate profesională Poziţii ocupate octombrie 2009 – Profesor la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca octombrie 2005 – septembrie 2009 Conferenţiar la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca februarie 2002 - octombrie 2005 Lector la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca octombrie 1998 - februarie 2002 Asistent la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca ianuarie 1998 - septembrie 1998 Informatician la S.C. “Sport Ancada Prodimpex” Cluj-Napoca septembrie 1992 - ianuarie 1998 Profesor de informatică la “Şcoala Naţională de Gaz” Mediaş VI Activitate didactică În timpul activităţii mele la “Şcoala Naţională de Gaz” am predat următoarele discipline: “Programarea Calculatoarelor” - limbajul de programare Pascal la clasele a IX-a şi a X-a; “Sisteme de Calcul”, clasa a IX-a; “Bazele Informaticii”, clasele a X-a şi a XII-a; “Programarea Calculatoarelor” - limbajul de programare C la clasa a XI-a; “Informatică de Gestiune” - limbajul FoxPro la clasa a XII-a; “Informatică aplicată” - clasa a XII-a; laboratoare la materiile “Programarea Calculatoarelor” la clasele a IX-a, a X-a, a XI-a ţi la materia “Informatică de Gestiune” la clasa a XII-a. În timpul activităţii mele la Catedra de Informatică a Universităţii “Babeş-Bolyai” am predat următoarele discipline: “Algoritmică şi programare”, seminar şi laborator pentru anul I de studii (informatică); “Programarea Calculatoarelor”, seminar şi laborator pentru anul I de studii (informatică şi matematică-informatică); “Programare Orientată Obiect”, seminar şi laborator pentru anul I de studii (informatică şi matematică-informatică); “Fundamentele programării”, curs, seminar şi laborator pentru anul I de studii (informatică); “Metode evoluate de Programare”, laborator pentru anul II de studii (informatică); “Programare Logică şi Funcţională”, curs şi laborator pentru anul II de studii (informatică şi matematică-informatică); “Inteligenţă Artificială”, curs, seminar şi laborator pentru anul IV de studii (informatică); “Birotică”, curs şi laborator pentru anul III de studii (matematică); “Proiect Colectiv”, laborator pentru anul III de studii (informatică); “Proiect Individual”, laborator pentru anul II de studii (informatică); “Structuri de Date”, curs şi seminar pentru anul I de studii (informatică şi matematicăinformatică); “Agenţi Inteligenţi Cooperativi”, curs şi laborator, în limba engleză, pentru studii aprofundate (master); “Tehnici de realizare a Sistemelor Inteligente”, curs şi laborator pentru anul IV de studii (informatică şi matematică-informatică). “Instruire automată”, curs şi laborator, în limba engleză, pentru studii aprofundate (master); VII Activitate profesională extradidactică În timpul activităţii mele la “Şcoala Naţională de Gaz”, Mediaş; - am îndrumat elevi pentru Olimpiadele Judeţene, Naţionale şi Internaţionale de Informatică, obţinând următoarele rezultate în perioada 1992 - 1997: la Olimpiadele Judeţene: 1 loc III, 7 locuri II, 5 locuri I; la Olimpiadele Naţionale: 2 menţiuni, 1 premiu III, 1 premiu I; la Olimpiada Internaţională: 1 premiu II. - am îndrumat elevi pentru Concursurile şcolare de Informatică (Programare şi Creaţie), obţinând în perioada 1992 - 1997 1 menţiune, 3 locuri III, 1 loc II şi 3 locuri I; - am elaborat un pachet de produse program pentru Unităţile de Învăţământ program de salarizare, evidenţă personal; program de evidenţă a situaţiei şcolare; program de gestiune a bibliotecii; program pentru concursurile de admitere în liceu şi bacalaureat. - am activat ca secretar de redacţie la “Revista Şcolii Naţionale de Gaz”; - am organizat şi îndrumat elevii în cadrul Cercului de Informatică organizat la “Şcoala Naţională de Gaz” în perioada 1992 - 1997; - am publicat articole în Revista şi Gazeta de Informatică a Şcolii Naţionale de Gaz, Mediaş; - am susţinut referate în cadrul Cercurilor Metodice Interjudeţene pe judeţul Sibiu; - am elaborat un program de evidenţă contabilă pentru firma “Assa-Ştefănel”, Mediaş. În timpul activităţii mele la “Şcoala Naţională de Gaz”, Mediaş, am elaborat un program de evidenţă contabilă pentru firma “ASSA-ŞTEFĂNEL” din Mediaş. În timpul activităţii mele la S.C. “Sport Ancada Prodimpex” Cluj-Napoca, am elaborat un program de gestiune a firmei. În timpul activităţii mele la Catedra de Informatică a Universităţii “Babeş-Bolyai”: - am contribuit la organizarea ediţiilor 1999 şi 2000 ale Olimpiadei de Informatică, faza judeţeană, judeţul Cluj (formularea subiectelor şi evaluarea concurenţilor); - am contribuit la organizarea ediţiilor 1999-2007 ale Concursului de Programare “Grigore Moisil”, organizat în cadrul Facultăţii de Informatică (formularea subiectelor şi evaluarea concurenţilor). În perioada 2000 - 2001 am colaborat la realizarea produsului program “DIC2001”, un dicţionar electronic, realizat de firma “MultiSoft” SRL, Cluj-Napoca. VIII Domenii de interes ştiinţific Printre domeniile mele de interes ştiinţific menţionez: Inteligenţa Artificială (Agenţi inteligenţi, Sisteme Multiagent, Instruire automată), Ingineria soft, Programare logică şi funcţională, Bioinformatică. IX Activitate ştiinţifică Publicaţii Lucrări ştiintifice: 154 53 publicaţii cotate ISI (dintre care 25 în reviste ISI şi 28 la conferinţe ISI), 84 publicaţii indexate BDI (INSPEC, ACM, DBLP, MathematicalReviews), 17 publicaţii neindexate Cărți: 8 Manuale: 4 Rezultate originale (teoretice şi aplicative) Dintre cele mai importante rezultate ştiinţifice obţinute menţionez următoarele : Agenţi inteligenţi şi Sisteme multiagent: folosirea Modelelor Markov Ascunse ca modele matematice pentru agenţi inteligenti care învaţă; agent inteligent instruit pe baza antrenării Modelelor Markov Ascunse; agent inteligent pentru dezambiguarea sensurilor cuvintelor; agent ALSO bazat pe logică; agent inteligent de învăţare prin întărire URU (Utility-RewardUtility); agent de învăţare în timp real RTL (Real Time Learning Agent); agenţi inteligenţi adaptivi pentru interfeţe utilizator; agent pentru asistarea utilizatorului prin predicţia comportamentului utilizator; sistem multiagent de suport decizional pentru evoluţia sistemelor informatice; sistem multiagent de suport decizional bazat pe invatare supervizata, sistem multiagent pentru configurarea dinamică a structurilor de date; 3 cărţi în domeniul sistemelor inteligente, a agenţilor inteligenţi şi a sistemelor multiagent, 1 manual în domeniul Inteligenţei Artificiale (4 ediţii). Logică: o noua arhitectură logică pentru agenti inteligenţi (Arhitectura Logica folosind Stive de Obiective); antrenarea gramaticilor independente de context folosind Modele Markov Ascunse; determinarea extensiilor în logici default folosind o abordare bazată pe restricţii. Instruire (învăţare) automată: algoritmul de învăţare în timp real RTL (Real Time Learning Algorithm), teorema de covergenţă a algoritmului; învăţare cooperativă în Data Mining; algoritmul de învăţare prin întărire URU (Utility-Reward-Utility), teorema de convergenţă a algoritmului; abordări de învăţare pentru problema comis voiajorului. Analiza clusterilor: tehnici de clustering pentru fragmentarea orizontală adaptivă în baze de date orientate obiect; clustering ierarhic incremental bazat pe nuclee; clustering partiţional incremental bazat pe nuclee; algoritmi de clustering adaptiv. Analiza asocierilor: algoritm pentru descoperirea regulilor de asociere ordinale de orice lungime dintr-un set de date; reguli de asociere ordinale pentru detecţia erorilor. Prelucrarea limbajului natural: sistem pentru dezambiguarea sensurilor cuvintelor; un experiment de dezambiguare pentru limba română; tehnici de clustering a cuvintelor pentru sisteme de Question Answering, algoritmi de dezambiguare în lanţ a cuvintelor şi algoritmi pentru recunoaşterea inferenţelor textuale, algoritmi pentru sumarizare automată. Ingineria Soft: o interfaţă pentru programarea simulărilor de învăţare prin întărire; o interfaţă de programare pentru determinarea regulilor de asociere ordinale; o abordare de clustering bazata pe model vectorial în Aspect Mining pentru identificarea funcţionalităţilor transversale; o interfaţă de programare pentru clustering partiţional; o interfaţă de programare pentru predicţia diagnosticului medical; algoritmi de clustering pentru îmbunătăţirea structurii de clase a unui sistem informatic prin identificarea refactorizărilor necesare; algoritmi de clustering pentru problema identificării funcţionalităţilor transversale; algoritmi bazati pe căutare pentru identificarea şabloanelor de proiectare; o abodare bazată pe reţele neuronale pentru configurarea dinamică a structurilor de date; 2 cărţi în domeniul programării logice şi funcţionale şi 1 carte în domeniul fundamentelor programării. Modelare formală: modelarea formală a problemei de aspect mining, modele matematice pentru problemele de restructurare a sistemelor informatice şi identificarea şabloanelor de proiectare. Inteligenţa Artificială aplicată: în Software Engineering: modele de învăţare supervizată (reţele neuronale şi SVM) pentru selectarea dinamică a celei mai bune structuri de date pentru implementarea unui TAD, folosirea reţelelor cu autoorganizare SOM pentru identificarea refactorizărilor şi aspectelor. în Bioinformatică: model de învăţare prin întărire pentru predicţia structurii bidomensionale a proteinelor, asamblarea fragmentelor ADN, clasificator bazat pe reguli de asociere relaţionale pentru clasificarea secvenţelor de gene (promoteri), model de ȋnvățare prin ȋntărire pentru problema ordonării temporale. X Participări la conferinţe 1. CANS '2008, Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, Târgu-Mureş, Romania, November 8-10, 2008 2. KEPT 2007, Knowledge Engineering: Principles and Techniques, Babeş-Bolyai University, Cluj-Napoca, June 6-8, 2007 3. 1st IEEE International Conference on Computers, Communications and Control, Băile Felix, Oradea, June, 2006 4. The 7th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing , Timişoara, Romania, September 26-29, 2006 5. The 20th International Symposium on Computer and Information Sciences, Istanbul, Turkey, October 26-28, 2005 6. The Fifth Joint Conference on Mathematics and Computer Science, Debrecen, Hungary, June 9-12, 2004 – conferinţă invitată 7. Intelligent Information Systems - New Trends in Intelligent Text Processing and Web Mining, Zakopane, Poland, June 2-5, 2003 8. Appia-Gulp-Prode 2003 - Joint Conference on Declarative Programming, Reggio Calabria, Italia, September 3-5, 2003 9. Simpozionul Zilele Academice Clujene, Cluj Napoca, June 2002 10. The 4th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing , Timişoara, Romania, October 9-12, 2002 11. Advanced Educational Technologies, AET Workshop, Târgu Mureş, March 8-16, 2001 12. The Fourth Joint Conference on Mathematics and Computer Science, Felix, Romania, June 5-10, 2001 13. The Second International Workshop of Central and Eastern Europe on Multi-Agent Systems, Krakow, Polonia, September 26-29, 2001 XI Activităţi editoriale 1. Referent pentru revista Studia Universitatis “Babeş-Bolyai”, Informatica, 2004-. 2. Referent pentru conferinţa ISCIS'05, The 20th International Symposium on Computer and Information Sciences, Turkey, 2005 (ISI) Zafer Bingul, Cuneyt Oysu, Comparison of Stochastic and Approximate Algorithmsfor One-Dimensional Cutting Problems - for ISCIS'05, The 20th International Symposium on Computer and Information Sciences, Turkey, 2005 Xinyu Zhao, Zuoquan Lin, A Logical Model for Rational Agents Incorporating Belief, Capability and Promise - for ISCIS'05, The 20th International Symposium on Computer and Information Sciences, Turkey, 2005 (ISI) 3. Referent pentru conferinţa KEPT 2007, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca 4. Referent pentru conferinţa CANS '2008, Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, Târgu-Mureş, Romania, 8-10 Noiembrie, 2008 5. Referent pentru conferinţa KEPT 2009, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca 6. Referent pentru conferinţa UICS 2009, Understanding Intelligent Complex Systems, Târgu-Mureş, Romania, 22-23 Octombrie, 2009 7. Membră în colectivul ştiinţific al revistei “BRAIN. Broad research in Artificial Intelligence and Neuroscience”, EduSoft, 2010 8. Referent al revistei JRPIT, Journal of Research and Practice in Information Technology (ISI), 2010 9. Referent pentru conferinţa MACS 2010, 8th Joint Conference on Mathematics and Computer Science, Slovacia, 2010 10. Referent al revistei IJCCC, International Journal of Computers, Communication and Control (ISI), 2011 11. Referent pentru conferinta MedDecSup 2011, Next generation on Intelligent medical Decision Support Systems, Tȃrgu-Mureș, 2011. 12. Referent pentru conferinţa KEPT 2011, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca 13. Referent al revistei IJCCC, International Journal of Computers, Communication and Control (ISI), 2012 14. Referent al revistei “African Journal of Agricultural research” (ISI), 2012 15. Referent al revistei “IET Software” (ISI), 2013 16. Referent al revistei “International Journal of Pattern Recognition and Artificial Intelligence” (ISI), 2014 17. Referent al revistei “Journal of Systems and Software” (ISI), 2014 18. Referent al revistei “Soft computing” (ISI), 2014, 2016 XII Membru în comisii de doctorat 1. Referent la teza de doctorat “Agenţi cu capacităţi cognitive”, doctorand Iantovics Barna, conducător ştiinţific prof. dr. Dan Dumitrescu, 2007 2. Referent la teza de doctorat “Aspect Mining. Formalisation, New Approaches, Evaluation”, doctorand Cojocar Grigoreta, conducător ştiinţific prof. dr. Militon Frenţiu, 2008 3. Referent la teza de doctorat “Combinatorial optimization with bio-inspired computing”, doctorand Pintea Camelia-Mihaela, conducător ştiinţific prof. dr. Dan Dumitrescu, 2008 4. Referent la teza de doctorat “Textual Entailment”, doctorand Adrian Iftene, conducător ştiinţific prof. dr. Dan Cristea, 2009 5. Referent la teza de doctorat “Algoritmi evolutivi în VLSI-CAD”, doctorand Doina Logofătu, conducător ştiinţific prof. dr. Dan Dumitrescu, 2010 6. Referent la teza de doctorat “Predication driven Textual Entailment”, doctorand Mihai Alex Moruz, conducător ştiinţific prof. dr. Dan Cristea, 2011 7. Referent la teza de doctorat “Agent based Pattern Recognition”, doctorand Radu Dan Găceanu, doctorand co-tutelă Universitatea Babeș-Bolyai-Universitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop (UBB), dr. László Kozma (ELTE), 2012 8. Membră ȋn comisia de susținere publică a tezei de doctorat “Intelligent Models for Robotic Behaviour, Decision Making and Environment Interaction”, doctorand Hunor Sandor Jakab, doctorand co-tutelă Universitatea Babeș-Bolyai-Universitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop (UBB), dr. Zoltán Istenes (ELTE), 2012 (membră ELTE, președinte UBB) 9. Președinte ȋn comisia de susținere publică a tezei de doctorat “Functional modeling of operating systems”, doctorand Pali Gabor Janos, doctorand co-tutelă Universitatea BabeșBolyai-Universitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop (UBB), dr. Tamás Kozsik Istenes (ELTE), 2012 (membră ELTE, președinte UBB) 10. Referent la teza de doctorat “Metode robuste de detecție a obiectelor cu aplicații în detecția facială”, doctorand Szidonia Lefkovits, conducător ştiinţific prof. dr. Horia F. Pop, 2012 11. Referent la teza de doctorat “Model learning for robot control”, doctorand Bocsi Attila Botond, conducător ştiinţific prof. dr. Horia F. Pop, 2012 12. Referent la teza de doctorat “Machine learning in computer vision and string processing”, doctorand Radu Tudor Ionescu, conducător ştiinţific prof. dr.Denis Enăchescu, 2013 13. Președinte ȋn comisia de susținere publică a tezei de doctorat “Metode fuzzy de asistare a deciziilor multicriteriale”, doctorand Delia Tușe, conducător ştiinţific prof. dr. Bazil Pârv XIII Membru în organizaţii ştiinţifice şi profesionale 1. 2014-prezent Membră ȋn comisia CNATDCU de Informatică. XIV Conducere doctorat 1. Bocicor Maria-Iuliana (2010-2013) Titlu teză: „Machine learning models for solving problems in bioinformatics” – 2013 titlul de Doctor ȋn Informatică, distincția „Excelent” 2. Marian Zsuzsanna-Edit (2011-2014) Titlu teză: „Machine learning based software development” – 2014 titlul de Doctor ȋn Informatică, distincția „Excelent” 3. Rus Adela (2012-2015) Titlu teză: „Dynamic learning for supervised and unsupervised classification” – doctorat în co-tutelă cu Insa Rouen, Franța 4. Mircea Ioan-Gabriel (2013-2016) Titlu teză: „Applied machine learning” 5. Ionescu Vlad-Sebastian (2014-2017) Titlu teză: „Applied computational intelligence techniques” XV Îndrumare doctoranzi 1. Doctorand Radu Dan Găceanu, doctorand co-tutelă Universitatea Babeș-BolyaiUniversitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop, 2012 - doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta 2. Doctorand Hunor Sandor Jakab, doctorand co-tutelă Universitatea Babeș-BolyaiUniversitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop, 2012 - doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta 3. Doctorand Bocsi Attila Botond, conducător ştiinţific prof. dr. Horia F. Pop, 2012 doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta 4. Doctorand Ovidiu Şerban, conducător ştiinţific prof. dr.Horia F. Pop, 2013 - doctorat în co-tutelă cu Insa Rouen, Franța 5. Doctorand Alina Miron, conducător ştiinţific prof. dr.Horia F. Pop, 2013 - doctorat în co-tutelă cu Insa Rouen, Franța 6. Mihai Popescu (2015-2018) - Titlu teză: „Coordination and conectivity in fleets of robots”, conducător ştiințific prof. dr. Olivier Simonin - doctorat Insa Lyon, Franța XVI Membru în comitete de organizare sau comitete ştiinţifice ale conferinţelor 1. Membră în comitetul ştiinţific al conferinţei KEPT 2007, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca 2. Membră în comitetul ştiinţific al workshop-ului BICS '2008, Bio-Inspired Computational Methods Used for Difficult Problem Solving. Development of Intelligent and Complex Systems, Târgu-Mureş, Romania, 5-7 Noiembrie, 2008 3. Membră în comitetul ştiinţific al workshop-ului CANS '2008, Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, Târgu-Mureş, Romania, 8-10 Noiembrie, 2008 4. Membră în comitetul ştiinţific al conferinţei KEPT 2009, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca, 2009 5. Membră în comitetul ştiinţific al simpozionului internaţional UICS '2009, Understanding Intelligent Complex Systems, Târgu-Mureş, Romania, 22-23 Octombrie, 2009 6. Membră în comitetul comitetul ştiinţific al conferinţei ConsILR 2010, “Resurse lingvistice şi instrumente pentru prelucrarea limbii române”, Bucureşti, 2010 7. Membră în comitetul ştiinţific al conferinței MedDecSup 2011, Next generation on Intelligent medical Decision Support Systems, Tȃrgu-Mureș, 2011. 8. Membră în comitetul ştiinţific al conferinţei KEPT 2011, “Knowledge Engineering: Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca, 2011 9. Membră în comitetul de organizare și comitetul ştiinţific al școlii de vară EUROLAN 2011, Babeş-Bolyai University, Cluj-Napoca, 2011 10. Membră în comitetul comitetul ştiinţific al conferinţei ConsILR 2012, “Resurse lingvistice şi instrumente pentru prelucrarea limbii române”, Bucureşti, 2012 11. Membră în comitetul comitetul ştiinţific al conferinţei MDIS 2015, “Modelling and development of intelligent systems”, Sibiu, 2015 (http://conferences.ulbsibiu.ro/mdis/2015/) 12. Membră în comitetul ştiinţific al conferinţei MACS, Joint Conference on Mathematics and Computer Science (http://macs.elte.hu/committee/) 13. Membră în comitetul ştiinţific al conferinţei SYNASC, International Symposium on Symbolic and Numeric Algorithms for Scientific Computing XVII Coordonări de contracte finanţate din sursă naţională 1. Contribuţii în domeniul Sistemelor MultiAgent folosind psihologie cognitiva, agenţi de interfaţă şi paradigma programării orientate pe aspecte, Grant tip TP-T nr 30943/12.07.2007, Grant intern Universitatea Babeş-Bolyai, 2007-2010, 75000 RON (aprox. 23.900 Euro) 2. Cercetari in directia optimizarii adaptive a sistemelor informatice folosind tehnici de invatare automata si sisteme multiagent, Proiect PNCDI II – Proiecte de cercetare exploratorie, Cod CNCSIS ID_2286/2008, 2008-2010, 364460.59 RON XVIII Participări la contracte finanţate din sursă naţională 1. Modelarea şi implementarea unei baze multidisciplinare de algoritmi pentru crearea unui centru de calcul de înaltă performanţă, Grant CNCSIS Tip A 275, Contract între Universitatea Babeş-Bolyai, Cluj-Napoca şi Consiliul Naţional al Cercetării Stiinţifice Universitare, Ministerul Cercetării şi Tehnologiei, 1998-2000, 81.000.000 ROL (aprox. 9974 USD) Director: Prof. Univ. Dr. Militon Frenţiu Membru 2. Noi metode de calcul evolutiv. Aplicaţii în maşini instruibile, optimizare evolutivă, analiza datelor şi prelucrarea limbajului natural. Grant CNCSIS Tip A, 34971 / 2001, Contract între Universitatea Babeş-Bolyai, Cluj-Napoca şi Ministerul Educaţiei şi Cercetării, 2001-2003, 15000 RON (aprox. 10.000 Euro) Director: Prof. Univ. Dr. Dan Dumitrescu Membru 3. Sisteme de asistare a deciziilor colaborative în medii universitare- Studiu de caz UBB, Grant tip TP nr 2/ 2005, Grant intern Universitatea Babeş-Bolyai, Cluj-Napoca, 20052008, 50.000 RON (aprox. 13.000 Euro) Director: Prof. Univ. Dr. Ioan Niţchi Membru 4. Metode formale în realizarea unui procesor WSD, Grant tip TP nr 2/2006, Grant intern Universitatea Babeş-Bolyai Cluj-Napoca, 2007-2010, 118.000 RON (aprox. 37.700 Euro) Director: Prof. Univ. Dr. Militon Frenţiu Membru 5. Sistem decizional bazat pe tehnici de tip multi-agent pentru generarea, optimizarea si managementul registrelor nationale de boli cronice netransmisibile-CRONIS, Nr. 11- 003/2007, Proiect PNCDI II - 4 (Parteneriate in domenii prioritare), 2007-2010, 2.100.000 RON (aprox. 850.000 Euro) Director: Ioan Stoian - SC IPA SA sucursala Cluj Membru 6. Sistem de predicţie si avertizare privind efectele încălzirii globale asupra sănătăţii populatiei I–GLOB, Nr. 42-117/2008, Proiect PNCDI II - 4 (Parteneriate in domenii prioritare) 2008-2011, 2.000.000 RON (aprox. 465.000 Eur ) Director: Conf. Univ. Dr. Dana Manuela Sârbu Responsabil ştiințific proiect 7. ȊNVĂȚARE AUTOMATĂ ȊN PROBLEME PRIVIND EVOLUȚIA ȘI ȊNTREȚINEREA SISTEMELOR INFORMATICE, Proiect PN-II-RU-TE-2014-4-0082 (Tinere echipe de cercetare), 2015-2017, 549792 RON (aprox. 122.000 Euro) http ://www.cs.ubbcluj.ro/~istvanc/amel Membru XIX Participări la contracte finanţate din surse internaţionale 1. AETC – Advanced Education Technology Center. Partners: “Petru Maior” Univ. of TârguMureş, National University of Athens, University of Ireland Galway, Technical Univ. of Cluj-Napoca, “Babeş-Bolyai” University of Cluj-Napoca, TEMPUS S-JEP 12518-97, Finanţat de Comisia Europeană, 179 400 EUR, 1998-2001 Director: Prof. Dr. Călin Enăchescu - grant de mobilitate în perioada 06.11.2000-10.12.2000 la National Technical University of Athens XX Granturi de mobilitate finanţate din surse internaţionale 1. June 2003 - CEEPUS Mobility Grant H-81 - Universitatea “Eötvös Loránd” Budapesta, Ungaria. 2. June 2002 – CEEPUS Mobility Grant H-81 - Facultatea de Ştiinţe din Kosice, Slovacia. 3. June 1999 – CEEPUS Mobility Grant H-81 - Universitatea Tehnică din Szeged, Ungaria. XXI Premii şi distincţii 1. Distincţia “cum laude” la teza de doctorat. 2. Diplomă de merit pentru contribuţia la dezvoltarea Universităţii Babeş-Bolyai, Nr. 20639/11.12.2006, 2006. 3. Premiul “Best Student Paper Award” pentru articolul “A Formal Model For Clustering Based Aspect Mining”, The 8th WSEAS International Conference on Mathematical Methods And Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti, 2006. 4. Premiu pentru cărţi publicate în 2006, Universitatea Babeş-Bolyai, Nr. 32497/ 19.12.2007. 5. Premii pentru articol ISI, 2008-2014, CNCS. 6. Premiul “Profesorul anului”, Universitatea Babeş-Bolyai, Nr. 21906/07.12.2010, 2010. 7. Gradație de merit – 2008, 2011 8. Premiu pentru excelență științifică, Facultatea de Matematică și Informatică, 2012. XXII Limbi străine cunoscute Engleză Franceză Maghiară CITIT VORBIT SCRIS foarte bine bine bine foarte bine bine bine foarte bine bine bine Lista publicaţiilor Prof. dr. Gabriela (ŞERBAN) CZIBULA I Articole de specialitate Ia Articole in ISI Web of Knowledge Articole în publicaţii din ISI Science Citation Index Expanded IF 2015 cumulat = 31.2107 1. Şerban, G., Tătar, D., Word Sense Disambiguation for Untagged Corpus: Application to Romanian Language, Proceedings of CICling 2003, Mexico City, Mexic, in Computational Linguistics and Intelligent Text Processing, Lecture Notes in Computer Science N 2588, Springer-Verlag Berlin Heidelberg 2003, Alexander Gelbukh (Ed.), pp.268-272, ISBN 3-540-00843-8 2. Şerban, G., Câmpan, A., Incremental Clustering Using a Core-Based Approach, Proceedings of The 20th International Symposium on Computer and Information Science (ISCIS'05), Istanbul, Turkey, 2005, in Computer and Information Sciences-ISCIS 2005, Lecture Notes in Computer Science N 3733, SpringerVerlag Berlin Heidelberg 2005, pp.854-863, P. Yolum et al. (Eds), ISBN: 3-54029414-7 3. Şerban, G., Câmpan, A., Czibula, I.G., A Programming Interface For Finding Relational Association Rules, International Journal of Computers, Communications and Control, Vol. I/2006, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2006, Oradea, 2006, pp. 934-944 (IF=0.627) 4. Dărăbant, A.S., Câmpan, A., Şerban, G., Incremental Horizontal Fragmentation: A new Approach in the Design of Distributed Object Oriented Databases, International Journal of Computers, Communications and Control, Vol. I/2006, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2006, Oradea, 2006, pp. 170-174 (IF=0.627) 5. Câmpan, A., Şerban, G., Adaptive Clustering Algorithms, the 19th Canadian Conference on Artificial Intelligence, Canadian AI-2006, Quebec, Canada, 2006, in Advances in Artificial Intelligence, LNAI 4013, L. Lamontagne and M. Marchand (Eds.), Springer-Verlag Berlin Heidelberg 2006, pp. 409–420 6. Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112 (IF=1.386) 7. Czibula, I.G., Şerban, G., Hierarchical clustering based design patterns Identification, International Journal of Computers, Communications and Control, Vol. 3, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2008, Oradea, 2008, pp. 248-252 (IF=0.627) 8. Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a Directional Relation, Journal of Research and Practice in Information Technology, Vol. 41, Nr. 1, 2009, pp. 17-28 9. Czibula, G., Cojocar, G.S, A hierarchical clustering based approach in aspect mining, Computing and Informatics, Bratislava, Slovakia, Volume 29, No. 6, 2010, pp. 881-900 (IF = 0.524) 10. Czibula, G., Czibula, I.G., Incremental Refactoring Using Seeds, SIC Journal, Studies in Informatics and Control, Vol. 19, Issue. 3, 2010, pp. 271-284 (IF=0.723) 11. Czibula, G., Cojocar, G.S., Czibula, I.G., Evaluation Measures For Partitioning Based Aspect Mining Techniques, International Journal of Computers, Communications and Control, 6(1), 2011, pp. 72-80 (IF=0.627) 12. Bocicor, M. I., Czibula, G., Czibula, I.G., A Distributed Q-Learning Approach to Fragment Assembly, SIC Journal, Studies in Informatics and Control, Vol. 20, Issue. 3, 2011, pp. 221-232 (IF=0.723) 13. Czibula, G., Bocicor, M. I., Czibula, I.G., Promoter Sequences Prediction Using Relational Association Rule Mining, Evolutionary Bioinformatics, Vol. 8, 2012, pp. 181-196 (IF=1.404) 14. Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Using Software Metrics for Automatic Software Design Improvement, Studies in Informatics and Control, ISSN 1220-1766, vol. 21 (3), pp. 249-258, 2012 (IF=0.723) 15. Czibula, G., Crișan C.G., Pintea, M.C, Czibula, I.G., Soft computing approaches on the bandwidth problem, Informatica, Vilnius, Lithuania, 2013, Vol. 24, No. 1, pp. 1–12 (IF=1.386) 16. Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures Selection using Neural Networks, Knowledge and Information Systems, Volume 34, Issue 1, 2013, Page 171-192 (IF=1.702) 17. Czibula, G., Bocicor, M. I., Czibula, I.G., Temporal Ordering of Cancer Microarray Data through a Reinforcement Learning Based Approach, PloS One journal, 8(4): e60883, doi:10.1371/journal.pone.0060883, 2013 (IF=3.057) 18. Doina Tatar, Diana Inkpen, Gabriela Czibula, Text segmentation using Rogetbased weighted lexical chains, Computing and Informatics, Vol. 32, 2013, pp. 1001-1018 (IF=0.524) 19. Gabriela Czibula, Istvan Gergely Czibula, Software systems performance improvement by intelligent data structures customization, Information Sciences, Vol. 274, 2014, pp. 249-260 (IF=3.364) 20. Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect Prediction using Relational Association Rule Mining, Information Sciences, Vol. 264, April 2014, pp. 260-278 (IF=3.364) 21. Czibula, G., Czibula, I.G., Găceanu, R.D., A Support Vector Machine Model For Intelligent Selection of Data Representations, Applied Soft Computing, Volume 18, May 2014, Pages 70–81 (IF=2.857) 22. Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Detecting Software Design Defects Using Relational Association Rule Mining, Knowledge and Information Systems, Vol. 42, Number 3, 2015, pp. 545-577 (IF=1.702) 23. Gabriela Czibula, Istvan Gergely Czibula, Adela Sȋrbu, Ioan-Gabriela Mircea, A novel approach to adaptive relational association rule mining, Applied Soft Computing journal, Vol. 36, November 2015, pp. 519-533, 2015 (IF=2.857) 24. Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Software packages refactoring using a hierarchical clustering-based approach, Computing and Informatics, 2014, under review 25. Gabriela Czibula, Vlad-Sebastian Ionescu, Diana-Lucia Miholca, Ioan-Gabriel Mircea, Machine learning based approaches for predicting stature of archaeological skeletal remains from long bone lengths, Journal of Archaeological Science, vol. 65, pp. 85-99, 2016 (IF=2.255) 26. Czibula, I.G., Czibula, G., Marian, Zs., A Novel Approach Using Fuzzy SelfOrganizing Maps for Detecting Software Faults, Studies in Informatics and Control, ISSN 1220-1766, vol. 25 (2), pp.207-216, 2016 (IF=0.723) Articole în publicaţii din ISI Conference Proceedings Citation Index 1. Şerban, G., Tătar, D., An improved algorithm on Word Sense Disambiguation, Proceedings of IIS 2003 (Intelligent Information Systems - New Trends in Intelligent Text Processing and Web Mining), Zakopane, Poland, in Advances in Soft Computing, Springer Verlag, 2003, XIV, pp.199-208, ISBN 3-540-00843-8 2. Şerban, G., A New Programming Interface for Reinforcement Learning Simulations, in "Intelligent Information Processing and Web Mining" Proceedings of IIS:IIPWM'05 (Intelligent Information Systems - New Trends in Intelligent Information Proccessing and Web Mining), Gdansk, Poland, 2005, in Advances in Soft Computing, Springer Verlag, 2005, XV, pp.481-485, Klopotek, Mieczyslaw A.; Wierzchon, Slawomir T.; Trojanowski, Krzysztof (Eds.), ISBN: 3-540-25056-5 3. Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical Incremental Clustering, Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05), Timisoara, Romania, IEEE Computer Society Press, 2005, pp. 77-82, D. Zaharia (Ed.), ISBN 07695-2453-2 4. Câmpan, A., Şerban, G., A New Incremental Core-Based Clustering Method, Proceedings of the Second IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI'05), Beijing, China, 2005, pp.269-278 5. Şerban, G., Moldovan, G.S, A new k-means based clustering algorithm in Aspect Mining, Proceedings of the 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'06), Timisoara, Romania, 2006, pp.69-74 6. Şerban, G., Tarţa, A., Moldovan, G.S, A Learning Interface Agent for User Behavior Prediction, Proceedings of HCI International 2007, China, LNCS 4552: HCI Intelligent Multimodal Interaction Environments by J. Jacko, ISBN 978-3540-73108-5, pp. 508-517 7. Czibula, I.G., Şerban, G., A Programming Interface for Determining Refactorings of Object-Oriented Software Systems using Clustering, ICCP 2007: Proceedings of the IEEE 3rd International Conference on Intelligent Computer Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania, pp. 271-274 8. Cojocar, G.S, Şerban, G., On Evaluating Aspect Mining Techniques, ICCP 2007: Proceedings of the IEEE 3rd International Conference on Intelligent Computer Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania, pp. 217-224 9. Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering, ISCIS 2007, Proceedings of The 22th International Symposium on Computer and Information Sciences, November 7-9, Ankara, Turkey, 2007, pp. 262-267 10. Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring through Clustering, ICAISC'08, The Eighth International Conference on Artificial Intelligence and Soft Computing, LNAI 5097, pp. 693-704 11. Czibula, I.G., Şerban, G., Identifying Design Patterns in Object-Oriented Software Systems Using Unsupervised Learning, 2008 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 347352 12. Czibula, G., Guran, A., Cojocar, G.S, Czibula, I.G., Multiagent Decision Support Systems based on Supervised Learning, 2008 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 353358 13. Cojocar, G.S., Czibula, G., On Clustering Based Aspect Mining, ICCP 2008: Proceedings of the IEEE 4th International Conference on Intelligent Computer Communication and Processing, 2008, Cluj-Napoca, Romania, pp. 129-136 14. Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 253-256 15. Tătar, D., Mihiş, A., Czibula G., Lexical Chains Cohesion Segmentation in Summarization, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 95-101 16. Czibula, I.G., Czibula, G., Refactorings Detection Using Hierarchical Clustering, European Computing Conference, ECC'08, Malta, 2008, pp.332-337 17. Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent MultiAgent System for Clinical Decision Support, International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS' 2008, Targu Mures, IEEE Society Press, 2008, pp. 183-188 18. Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting concerns identification, Proceedings of the 8th International Conference on Software Engineering, parallel and distributed systems (SEPADS '09), Cambridge, UK, 2009, pp. 111-116 19. Tătar, D., Tămâianu, E., Czibula, G., Segmenting text by lexical chains distribution, KEPT 2009, Knowledge Engineering: Principles and Techniques, International Conference, Babes-Bolyai University, Presa Universitară Clujeană, 2009, pp. 69-76 20. Czibula, G., Guran, A., Czibula, I.G., Cojocar, G.S., IPA - An Intelligent Personal Assistant Agent For Task Performance Support, ICCP 2009: Proceedings of the IEEE 5th International Conference on Intelligent Computer Communication and Processing, 2009, Cluj-Napoca, Romania, pp. 31-34 21. Czibula, I.G., Czibula, G., Guran, A., Dynamic customization of data structures instances using an agent based approach, SYNASC 2009, Proceedings of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2009, IEEE Society Press, pp. 341-347 22. Czibula, G., Czibula, I.G., Adaptive Refactoring Using a Core-Based Clustering Approach, Proceedings of the 9th International Conference on Software Engineering, Parallel and Distributed Systems (SEPADS '10), Cambridge, UK, 2010, pp. 133-138 23. Czibula, I.G., Czibula, G., Hierarchical Clustering for Adaptive Refactorings Identification, 2010 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2010, pp. 99-104 24. Petraşcu, V., Czibula, G., Sîrbu, D., Popa, M., Curşeu, D., Identifying the impact of global warming on population using a clustering based approach, 2010 IEEETTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2010, pp. 294-299 25. Czibula, G., Bocicor, M.I., Czibula, I.G., A Distributed Reinforcement Learning Approach for Solving Optimization Problems, in Recent Researches in Communications and IT, Proceedings of the 5th International Conference on Communications and Information Technology (CIT '11), Greece, 2011, pp. 25-30 26. Bocicor, M. I., Czibula, G., Czibula, I.G., A Reinforcement Learning Approach for Solving the Fragment Assembly Problem, Proceedings of the 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2011, IEEE Computer Society, pp. 191-198, 2011 27. Alina Andreica, Josef Küng, Gabriela Şerban Czibula and Christian Sacarea, Designing a General Architecture for Data Interchange, 10th International Conference on Web Information Systems and Technologies, SCITEPRESS – Science and Technology Publications, 978-989-758-023-9, pp. 214-219, 2014. 28. Sȋrbu, A., Czibula, G., Bocicor, M.I., Dynamic clustering of gene expression data using a fuzzy approach, The 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, IEEE Computer Society, pp. 220-227, 2014 29. Ionescu V.S, Mircea I.G., Miholca, D.L, Czibula G., Instance Based Learning Approaches for predicting the height of human skeletons, ICCP 2015: Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing, 2015, Cluj-Napoca, Romania, pp. 309-316 30. Mircea I.G., Czibula G., Bocicor, M.I., A Q-learning Approach for Aligning Protein Sequences, ICCP 2015: Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing, 2015, Cluj-Napoca, Romania, pp. 51-58 31. Mircea, I.G., Bocicor, M. I., Czibula, G., A novel reinforcement learning based approach to multiple sequence alignment, 7th International Workshop on Soft Computing Applications, 2016, to be published 32. Ionescu, V.S., Czibula, G., Teletin, M., Supervised learning techniques for body mass estimation in bioarchaeology, 7th International Workshop on Soft Computing Applications, 2016, to be published 33. Diana-Lucia Miholca, Gabriela Czibula, Ioan-Gabriel Mircea, Istvan Gergely Czibula, Machine learning based approaches for sex identification in bioarchaeology, Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'16), Timisoara, Romania, IEEE Computer Society Press, to be published 34. Zsuzsanna Marian, Ioan-Gabriel Mircea, Istvan-Gergely Czibula and Gabriela Czibula, A novel approach for software defect prediction using fuzzy decision trees, Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'16), Timisoara, Romania, IEEE Computer Society Press, to be published 35. Czibula, I.G, Miholca, D.L , Czibula, G., Enhancing relational association rules with gradualness, 9th International Conference on Knowledge Science, Engineering and Management, KSEM 2016, under review Ib Articole publicate în volume ale conferinţelor internaţionale indexate 1. Şerban, G., Training Hidden Markov Models - a Method for Training Intelligent Agents, Proceedings of the Second International Workshop of Central and Eastern Europe on Multi-Agent Systems, Krakow, Polonia, 2001, Barbara Dunin-Keplicz (Ed.) pp.267-276, ISBN 83-915953-0-7 2. Şerban, G., Real Time Learning in Agent Based Systems, Proceedings of the 4th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing , Timisoara, Romania, 2002, pp.337-347, ISBN: 973-585-785-5 3. Orăşan, C., Tătar, D., Şerban, G., Oneţ, A., Avram, D., How to build a QA System in your back-garden: application to Romanian, Proceedings of EACL 2003, Budapest, Hungary, 2003, pp. 139-142, ISBN 1-932432-01-9 4. Şerban, G., A new logic architecture for Intelligent Agents, Proceedings of AGP 2003 (Appia-Gulp-Prode 2003 - Joint Conference on Declarative Programming), Reggio Calabria, Italia, 2003, pp.159-168 5. Şerban, G., Development methods for Intelligent Systems, Proceedings of the Fifth Joint Conference on Mathematics and Computer Science, Debrecen, Hungary, 2004, pp. 17-18 6. Şerban, G., Tătar, D., UBB System at Senseval-3, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, ACL 2004, Barcelona , July 2004, pp.226-228 7. Câmpan, A., Dărăbant, A., Şerban, G., Clustering Techniques for Adaptive Horizontal Fragmentation in Object Oriented Databases, International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI05), in Acta Universitatis Apulensis no. 10, 2005, pp.263-274 8. Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical Incremental Clustering, Proceedings of the 7th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05), Timisoara, Romania, 2005, pp. 42-47 9. Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space Model Based Clustering Approach, Proceedings of the 2nd Workshop on Linking Aspect Technology and Evolution, AOSD'06, The 5th Aspect-Oriented Software Development, LATE workshop, 2006, pp.36-40 10. Câmpan, A., Şerban, G., Truţă, M., Marcus, A., An Algorithm for the Discovery of Arbitrary Length Ordinal Association Rules, DMIN'06, The 2006 International Conference on Data Mining, Las Vegas, USA, Sven F. Crone (Ed.), CSREA Press, USA, ISBN: 1-60132-004-3, pp. 107-113, 11. Moldovan, G.S, Şerban, G., Quality Measures for Evaluating the Results of Clustering Based Aspect Mining Techniques, Proceedings of International workshop TEAM'06, 2006, pp. 13-16 12. Şerban, G., Moldovan, G.S, A New Genetic Clustering Based Approach in Aspect Mining, The 8th WSEAS International Conference on Mathematical Methods And Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti, 2006, pp. 135-140 13. Moldovan, G.S, Şerban, G., A Formal Model For Clustering Based Aspect Mining, The 8th WSEAS International Conference on Mathematical Methods And Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti, 2006, pp. 70-75 14. Tătar, D., Şerban, G., Mihiş, A., Mihalcea, R., Textual Entailment as a Directional Relation, Computer-aided language processing, CALP 2007, Borovets, Bulgaria, 30 September 2007, pp. 53-58 15. Şerban, G., Moldovan, G.S, A New Graph-Based Approach in Aspect Mining, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 252-260 16. Czibula, I.G., Şerban, G., A Hierarchical Clustering Algorithm for Software Design Improvement, KEPT 2007, Knowledge Engineering: Principles and Techniques, International Conference, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, in Studia Informatica, pp. 316-323 17. Tătar, D., Şerban, G., Lupea, M., Text Entailment Verification with Text Similarities, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 33-40 18. Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain algorithm for Word Sense Disambiguation, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, ClujNapoca, pp. 41-49 19. Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect Mining Techniques, Proceedings of the 3rd Workshop on Linking Aspect Technology and Evolution, Vancouver, Canada, LATE'07, 2007, pp. 40-44 20. Şerban, G., Czibula, I.G., A New Clustering Approach for Systems Designs Improvement, 2007 International Conference on Software Engineering Theory and Practice, SETP-07, Orlando, USA, July 9-12, 2007, pp. 47-54 21. Czibula, I.G., Şerban, G., Software Systems Design Improvement Using Hierarchical Clustering, SERP'07- The 2007 International Conference on Software Engineering Research and Practice, June 25-28, Las Vegas, USA, 2007, pp. 229-235 22. Şerban, G., Czibula, I.G., Câmpan, A., Medical Diagnosis Prediction using Relational Association Rules, International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI'07), Alba-Iulia, 2008, pp. 339-352 23. Tătar, D., Mihiş, A., Serban G., Top-down Cohesion Segmentation in Summarization, STEP 2008, Symposium on Semantics in Systems for Text Processing, Venice, Italy, 2008, pp. 145-151 Ic Articole publicate în reviste internaţionale indexate 1. Şerban, G., Tătar, D., Well-typedness verification in logic programming with types, Studia Universitatis “Babeş-Bolyai”, Informatica, XLIII, Number 2, 1998, pp.13-23 2. Şerban, G., An improvement of the Roy-Floyd algorithm, Studia Universitatis “Babeş-Bolyai”, Informatica, XLIV(1), 1999, pp.94-99 3. Duda, A., Şerban, G., Tătar, D., Training probabilistic context-free grammars as hidden Markov models, Studia Universitatis “Babeş-Bolyai”, Informatica, XLV(1), 2000, pp.17-30 4. Şerban, G., A Method for Training Intelligent Agents Using Hidden Markov Models, Studia Universitatis “Babeş-Bolyai”, Informatica, XLV(2), 2000, pp.4150 5. Şerban, G., Tătar, D., Term Rewriting Systems in Logic Programming and in Functional Programming, Studia Universitatis “Babeş-Bolyai”, Informatica, XLV(2), 2000, pp.77-84 6. Şerban, G., A Reinforcement Learning Intelligent Agent, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVI(2), 2001, pp.9-18 7. Tătar, D., Şerban, G., A New Algorithm for Word Sense Disambiguation, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVI(2), 2001, pp.99-108 8. Şerban, G., A New Real-Time Learning Algorithm, Studia Universitatis “BabeşBolyai”, Informatica, XLVII(1), 2002, pp.3-14 9. Şerban, G., LASG – A Logic Architecture for Intelligent Agents, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVII(2), 2002, pp.13-22 10. Şerban, G., Tătar, D., A Word Sense Disambiguation Experiment for Romanian Language, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVII(2), 2002, pp.37-42 11. Şerban, G., A New Reinforcement Learning Algorithm, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVIII(1), 2003, pp.3-14 12. Tătar, D., Şerban, G., Words Clustering in Question Answering Systems, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVIII(1), 2003, pp.23-32 13. Şerban, G., A New Interface for Reinforcement Learning Software, Studia Universitatis "Babes-Bolyai", Informatica, XLVIII(2), 2003, pp.3-10 14. Lupşa, D., Şerban, G., Tătar, D., Hierarchical clustering algorithms for repeating similarity values, Studia Universitatis "Babes-Bolyai", Informatica, XLVIII(2), 2003, pp.61-72 15. Şerban, G., Pintea, M.C., Heuristics and learning approaches for solving the Traveling Salesman Problem, Studia Universitatis "Babes-Bolyai", Informatica, XLIX(2), 2004, pp.27-36 16. Şerban, G., A Programming Interface for Non-Hierachical Clustering, Studia Universitatis "Babes-Bolyai", Informatica, L(1), 2005, pp.69-78 17. Şerban, G., Câmpan, A., Core Based Incremental Clustering, Studia Universitatis "Babes-Bolyai", Informatica, L(1), 2005, pp. 89-96 18. Şerban, G., Câmpan, A., Adaptive Clustering Using a Core-Based Approach, Studia Universitatis "Babes-Bolyai", Informatica, L(2), 2005, pp.33-40 19. Şerban, G., Czibula, I.G., Câmpan, A., A Programming Interface For Medical Diagnosis Prediction, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 21-30 20. Câmpan, A., Şerban, G., Marcus, A., Relational Association Rules and Error Detection, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 3136 21. Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp.69-78 22. Şerban, G., Moldovan, G.S, A Graph Algorithm for Identification of Crosscutting Concerns, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.3-10 23. Lupea, M., Şerban, G., A graph-based approach for computing constrained and rational default extensions, Analele Universităţii Timişoara, Seria Matematică şi Informatică, fasc.1/2006, vol.XLIV, pp.73-86 24. Moldovan, G.S, Şerban, G., A Study on Distance Metrics for Partitioning Based Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.53-60 25. Czibula, I.G., Şerban, G., Improving Systems Design Using a Clustering Approach, IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006, pp. 40-49 26. Czibula, I.G., Şerban, G., An Analysis of Distance Metrics for Clustering based Improvement of Systems Design, Studia Universitatis "Babes-Bolyai", Informatica, LII(1), 2007, pp. 45-54 27. Şerban, G., Czibula, I.G., On Evaluating Software Systems Design, Studia Universitatis "Babes-Bolyai", Informatica, LII(1), 2007, pp. 55-66 28. Czibula, I.G., Şerban, G., A Study on clustering based restructuring of Software Systems, Studia Universitatis "Babes-Bolyai", Informatica, LII(2), 2007, pp. 93100 29. Tarţa, A., Moldovan, G.S, Şerban, G., An Agent Based User Interface Evaluation Using Aspect Oriented Programming Techniques, ICAM5, Baia-Mare, Creative Math.&Inf, 16, 2007, pp.151-158 30. Şerban, G., Lupea, M., Computing Constrained Default Extensions - a Constraint Satisfaction Problem, ICAM5, Baia-Mare, Creative Math.&Inf, 16, 2007, pp.99107 31. Şerban, G., Moldovan, G.S, Aspect Mining Using An Evolutionary Approach, WSEAS Transactions on Computers, Issue 2, Vol.6, February 2007, pp. 298-305 32. Moldovan, G.S, Şerban, G., Clustering Based Aspect Mining Formalized, WSEAS Transactions on Computers, Issue 2, Vol.6, February 2007, pp. 199-206 33. Moldovan, G.S, Şerban, G., A Formal Model for Partitioning Based Aspect Mining, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 3 September 2007, pp. 19-26 34. Czibula, I.G., Şerban, G., Hierachical Clustering for Software Systems Restructuring, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 4, December 2007, pp. 43-51 35. Cojocar, G.S, Guran, A., Sanislav, T., Czibula, G., A multiagent based approach for national cancer registry management, ICAM6, International Conference on Applied Mathematics, Creative Math. &Inf., 3/2008, pp. 369-374 36. Czibula, I.G., Czibula (Serban), G., Hierarchical Clustering based Automatic Refactorings Detection, WSEAS Transactions on Electronics, Issue 7, Vol.5, July 2008, pp. 291-302 37. Şerban, G., Czibula, I.G., A Search Based Approach for Identifying Design Patterns, Studia Universitatis "Babes-Bolyai", Informatica, LIII(1), 2008, pp. 3-16 38. Czibula, I.G., Czibula, G., A partitional clustering algorithm for improving the structure of object-oriented software systems, Studia Universitatis "BabesBolyai", Informatica, LIII(2), 2008, pp. 105-114 39. Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring using Clustering, Analele Universitatiii de Vest Timisoara, Seria Matematică şi Informatică , Vol. XLVI, No. 2, 2008, pp. 161-173 40. Cojocar, G.S., Czibula, G., Czibula. I.G., A Comparative Analysis of Clustering Algorithms in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LIV(1), 2009, pp. 75-84 41. Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Decision support system for software maintenance and evolution, KEPT 2009, Knowledge Engineering: Principles and Techniques, International Conference, Babes-Bolyai University, in Studia Informatica, 2009, pp. 181-184 42. Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns Using Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume 8, 2009, pp. 386-395 43. Czibula. I.G., Czibula, G., Cojocar, G.S., Hierarchical Clustering for Identifying Crosscutting Concerns in Object Oriented Software Systems, , INFOCOMP Journal of Computer Science, Volume 8, Number 3, Brazilia, 2009, pp. 21-28. 44. Czibula, G., Czibula, I.G., Clustering Based Adaptive Refactoring, Wseas Transactions on Information Science and Applications, Issue 3, Volume 7, 2010, pp. 391-400 45. Czibula, G., Crisan, G.C., Pintea, C.M., Czibula, I.G., Soft computing approaches on the Bandwith Problem, Abstracts of International Conference on Applied Mathematics (ICAM7), 2010 46. Czibula, I.G., Czibula, G., On converting software systems to object oriented architectures, BRAIN Journal, Special Issue on Complexity in Sciences and Artifical Intelligence, Vol. 1, 2010, pp. 12-17 47. Czibula, I.G., Czibula, G., Unsupervised transformation of procedural programs to object-oriented design, Acta Universitatis Apulensis, Special Issue on Understanding Complex Systems, 2012, pp. 15-27 48. Czibula, I.G., Czibula, G., Adaptive restructuring of object-oriented software systems, Studia Universitatis "Babes-Bolyai", Informatica, LV(2), 2010, pp. 1-12 49. Czibula, G., Czibula, I.G., Pintea M.C, A Reinforcement Learning Approach for Solving the Matrix Bandwidth Minimization Problem, Studia Universitatis "Babes-Bolyai", Informatica, LV(4), 2010, pp. 9-17 50. Czibula G., Bocicor, M.I., Czibula, I.G., A Reinforcement Learning Model for Solving the Folding Problem, IJCTA - International Journal of Computer Technology and Applications, Vol. 2, Issue 1, 2011, pp. 171-182 51. Czibula, G., Bocicor, M.I., Czibula, I.G., An Experiment on Protein Structure Prediction using Reinforcement Learning, Studia Babes-Bolyai Informatica, LVI (1), 2011, pp. 25-34 52. Czibula, I. G., Czibula, G., Bocicor, M.I., A Software Framework for Solving Combinatorial Optimization Tasks, Studia Universitatis "Babes-Bolyai", Informatica, Proc. of KEPT 2011, Special Issue, LVI(3), pp. 3-8, 2011 53. Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem Using a Distributed Q-Learning Approach, International Journal of Computers, Volume 5, Issue 3, 2011, pp. 404-413 54. Czibula, G., Czibula, I.G., Unsupervised Restructuring of Object-Oriented Software Systems using Self-Organizing Feature Maps, International Journal of Innovative Computing Information and Control, Japan, Volume 8, No. 3(A), 2012, pp. 1689-1704 55. Czibula, G., Czibula, I.G., Bocicor, M.I., A Comparison of Reinforcement Learning Based Models for the DNA Fragment Assembly Problem, Studia Universitatis "Babes-Bolyai", Informatica, Proc. of KEPT 2013, LVIII(2), pp. 90102, 2013 56. Bocicor, M.I., Sȋrbu A., Czibula, G., Dynamic core based clustering of gene expression data, International Journal of Innovative Computing Information and Control, Japan, Volume 10, No. 3, 2014, pp. 1051-1069 57. Marian Zs., Czibula G., Czibula I.G., FAOS – A framework for analysing object oriented software systems, Studia Universitatis "Babes-Bolyai", Informatica, LIX(2), pp.66-81, 2014 58. Zsuzsanna Marian, Istvan Gergely Czibula, Gabriela Czibula and Sergiu Sotoc, Software Defect Detection using Self-Organizing Maps, Studia Universitatis "Babes-Bolyai”, LX(2), 2015, pp. 55-69 59. Ioan-Gabriel Mircea, Gabriela Czibula and Mara-Renata Petrusel, Sex identification in archaeological remains using decision tree learning, Studia Universitatis "Babes-Bolyai”, LX(2), 2015, pp. 91-103 Id Articole publicate în volume ale conferinţelor internaţionale neindexate 1. Şerban, G., Training intelligent agents as hidden Markov models, Proceedings of Abstracts of the Fourth Joint Conference on Mathematics and Computer Science, Felix, Romania, 2001, pp.91 2. Şerban, G., Web Programming Tutorials, Advanced Educational Technologies, Proceedings AET Workshop, Târgu Mureş, 2001, Editura Universităţii “PetruMaior” Târgu Mureş, pp.128-149, ISBN: 973-8084-60-1 3. Serban, G., Tutorials, Advanced Educational Technologies, Proceedings AET Workshop, Târgu Mures, 2001, Editura Universitatii "Petru-Maior" Târgu Mures, pp.158-281, ISBN: 973-8084-60-1 4. Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Assisting Software Maintenance and Evolution Using an Agent Based Approach, Post-proceedings of KEPT 2009, pp. 197-204 5. Czibula, I. G., Czibula, G., Bocicor, M.I., A Reinforcement Learning Based Framework for Solving Optimization Problems, Post proceedings of KEPT 2011, Presa Universitară Clujeană, 2011, pp. 235-246 6. Dumitrescu, D., Sas, L., Şerban, G., Câmpan, A., Dărăbant, A., Pop, H.F., Ţâmbulea, L., Cooperative Learning for Distributed Data Mining, in “Collaborative Support Systems in Business and Education” - International Workshop, Babes-Bolyai University, Faculty of Economics and Business Administration, Romania, Editura Risoprint, Cluj-Napoca, 2005, pp. 432-440 7. Şerban, G., Cojocar, G.S, A New Hierarchical Agglomerative Clustering Algorithm in Aspect Mining, BCI'07, Proceedings of the 3rd Balkan Conference in Informatics, 27-29 September 2007, Sofia, Bulgaria, pp. 143-152 8. Czibula, I.G., Şerban, G., A new Clustering Algorithm for Refactorings Determination, BCI'07, Proceedings of the 3rd Balkan Conference in Informatics, 27-29 September 2007, Sofia, Bulgaria, pp. 131-142 Ie Articole publicate în volume ale conferinţelor naţionale neindexate 1. Şerban, G., Software package for educational units, “Babeş-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer Science, Research Seminars, Seminar on Computer Science, 1998, pp.175-178 2. Şerban, G., Searching graphs in logical programming, “Babeş-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer Science, Research Seminars, Seminar on Computer Science, 1999, pp.67-72 3. Şerban, G., Intelligent agents and reinforcement learning, “Babeş-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer Science, Research Seminars, Seminar on Computer Science, 2000, pp.13-20 4. Şerban, G., A Simple Web Agent for displaying a tree structure, “Babeş-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer Science, Research Seminars, Seminar on Computer Science, 2001, pp.41-48 5. Şerban, G., Formal Methods in Agent Based Systems, Proceedings of the Symposium "Zilele Academice Clujene", Cluj Napoca, 2002, pp.59-68 6. Lupşa, D., Şerban, G., Tătar, D., From noun clusters to taxonomies on untagged corpora, Proceedings of the Symposium “Colocviul Academic Clujean de Informatica”, 2003, pp.182-191 7. Câmpan, A., Şerban, G., Dărăbant, A., Incremental Horizontal Fragmentation in Object Oriented Databases Using Clustering Techniques, Proceedings of the Symposium “Colocviul Academic Clujean de Informatica”, 2005, pp.63-68 8. Moldovan, G.S, Şerban, G., CAMIT - A Tool for Comparing Clustering Based Aspect Mining Techniques, Proceedings of the Symposium “Colocviul Academic Clujean de Informatica”, Directii noi de cercetare in Informatica, 2006, pp.9-14 9. Cojocar G.S., Czibula, G. FRAM - A Framework for Evaluating the Results of Aspect Mining Techniques, Proceedings of the Symposium “Colocviul Academic Clujean de Informatica”, Directii noi de cercetare in Informatica, 2008, pp. 13-20 II Manuale 1. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 2-a, 2000 2. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 3-a, 2001 3. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 4-a, 2002 4. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 5-a, 2003 III Cărţi publicate în edituri naţionale 1. Pop, H.F., Şerban, G., Programare în Inteligenţa Artificială: limbajele LISP şi PROLOG, Ed. Albastră, Cluj-Napoca, 2003, (186 pagini), ISBN 973-650-104-3 2. Şerban, G., Pop, H.F., Tehnici de Inteligenţă Artificială. Abordări bazate pe Agenţi Inteligenţi, Ed. Mediamira, Cluj-Napoca, 2004, (137 pagini), ISBN 973-003717-5 3. Şerban, G., Pop, H.F., Elemente avansate de programare în Lisp şi Prolog. Aplicaţii în Inteligenţa Artificială., Ed. Albastră, Cluj-Napoca, 2006, (270 pagini), ISBN 973-650-172-8 4. Şerban, G., Sisteme Multiagent în Inteligenţa Artificială Distribuită. Arhitecturi şi Aplicaţii, Ed. RisoPrint, Cluj-Napoca, 2006, (300 pagini), ISBN 973-751-194-8 (ISBN 978-973-751-194-2) 5. Frenţiu, M., Pop, H.F., Şerban, G., Programming Fundamentals, Ed. Presa Universitara Clujeana, Cluj-Napoca, 2006, (232 pagini - în limba engleză), ISBN 973-610-494-X (978-973-610-494-7) 6. Czibula, G., Sisteme inteligente. Instruire automata, Ed. RisoPrint, Cluj-Napoca, 2008, (218 pagini), ISBN 978-973-751-898-6 7. Niculescu V., Czibula, G., Structuri fundamentale de date si algoritmi. O perspectiva orientata obiect., Ed. Casa Cărții de știință, 2011 (230 pagini), ISBN 978-973-133-931-3 8. Czibula, G., Pop, H.F., Elemente avansate de programare în Lisp şi Prolog. Aplicaţii în Inteligenţa Artificială., Ed. Albastră, Cluj-Napoca, 2012 IV Alte publicaţii 1. Şerban, G., Despre viruşii calculatoarelor, Revista Şcolii Naţionale de Gaz Mediaş no.1, 1992 2. Şerban, G., Probleme de concurs, Revista Şcolii Naţionale de Gaz Mediaş no.1, 1992 3. Şerban, G., Grafică în Turbo Pascal, Revista Şcolii Naţionale de Gaz Mediaş no.2, 1992 4. Şerban, G., Programare orientată obiect, Gazeta de Informatică a Şcolii Naţionale de Gaz Mediaş, 1997 5. Şerban, G., Introducere în Java, Gazeta de Informatică a Şcolii Naţionale de Gaz Mediaş, 1997 V Citări Total citări: peste 227 Număr total de citări din ISI Web of Knowledge: 97 Hirsch index (ISI Web Of Knowledge) fără auto-citări: 4 Title Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 253-256 (ISI Proceedings) Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112 (ISI) Czibula, I.G., Serban, G., Hierarchical clustering based design No. of citations in ISI Web of Knowledge 4 8 3 patterns Identification, International Journal of Computers, Communications and Control, Vol. 3, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2008, Oradea, 2008, pp. 248-252 (ISI) Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring through Clustering, ICAISC'08, The Eighth International Conference on Artificial Intelligence and Soft Computing, LNAI 5097, pp. 693-704 Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures Selection using Neural Networks, Knowledge and Information Systems, 34(1) pp. 171–192 Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent MultiAgent System for Clinical Decision Support, International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS' 2008, Targu Mures, IEEE Society Press, 2008, pp. 183-188 (ISI Proceedings) Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect Prediction using Relational Association Rule Mining, Information Sciences, Vol. 264, April 2014, pp. 260-278 3 5 7 8 Hirsch index (Google Scholar) fără auto-citări: 9 Title Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space Model Based Clustering Approach, AOSD'06, The 5th AspectOriented Software Development, LATE workshop, 2006, pp. 36-40 Czibula, I.G., Şerban, G., Improving Systems Design Using a Clustering Approach, IJCSNS Int. Journal of Computer Science and Network Security, VOL.6 No.12, December 2006, pp. 40-49 Şerban, G., Moldovan, G.S, A new k-means based clustering algorithm in Aspect Mining, Proceedings of the 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'06), Timisoara, Romania, 2006, pp.60-64 Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring through Clustering, ICAISC'08, The Eighth International Conference on Artificial Intelligence and Soft Computing, LNAI 5097, pp. 693-704 Czibula, I.G., Şerban, G., Hierachical Clustering for Software Systems Restructuring, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 4, December 2007, pp. 43-51 Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 253-256 Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112 Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp.69-78 Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a Directional Relation, Journal of Research and Practice in Information No. of citations 19 15 12 10 10 8 14 8 6 Technology, Vol. 41, Nr. 1, 2009, pp. 17-28 Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect Mining Techniques, Proceedings of the 3rd Workshop on Linking Aspect Technology and Evolution, Vancouver, Canada, LATE'07, 2007, pp. 40-44 Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent MultiAgent System for Clinical Decision Support, International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS' 2008, Targu Mures, IEEE Society Press, 2008, pp. 183-188 (ISI Proceedings) Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect Prediction using Relational Association Rule Mining, Information Sciences, Vol. 264, April 2014, pp. 260-278 Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting concerns identification, Proceedings of the 8th International Conference on Software Engineering, parallel and distributed systems (SEPADS'09), Cambridge, UK, 2009, pp. 111-116 Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem Using a Distributed Q-Learning Approach, International Journal of Computers, Volume 5, Issue 3, 2011, pp. 404-413 6 11 19 9 9 Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring through Clustering, ICAISC'08, The Eighth International Conference on Artificial Intelligence and Soft Computing, LNAI 5097, pp. 693-704 (ISI Proceedings) cited in 1. Cassell, K., Andreae, P., Groves, L., Noble, J., Towards Automating Class-Splitting Using Betweenness Clustering, ASE '09: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer Society, 2009, pp. 595-599 (citation at pp. 596) (ISI Proceedings) 2. Keith Cassell Craig Anslow Lindsay Groves Peter Andreae, Visualizing the Refactoring of Classes via Clustering, 34th Australasian Computer Science Conference (ACSC 2011), Perth, Australia, January 2011, pp. 1-10 (citation at pp. 2,3,9) (ISI Proceedings) 3. Cassell, K., Anslow, C., Groves, L., Andreae, P., Vizualizing Class Refactoring via Clustering, Victoria University of Wellington, Technical Report ECSTR10-17, 2010 (citation at pp. 9) 4. Cassell, K., Groves, L., Andreae, P., Noble, J., An Initial Test Suite for Automated Extract Class Refactorings, Victoria University of Wellington, Technical Report ECSTR10-21, 2010 (citation at pp. 11) 5. Pan, Weifeng , Li, Bing,Ma, Yutao, Liu, Jing, Qin, Yeyi, Class structure refactoring of object-oriented softwares using community detection in dependency networks, Frontiers of Computer Science in China, Higher Education Press, co-published with Springer-Verlag GmbH, vol. 3, issue 3, pp. 396-404, 2009 6. Jinghong Chen, Refactoring with CARE: Fine-Grained Analysis of Refactoring Effects, PhD Thesis, National Cheng Kung Univeristy, China, 2009 (citation at pp. 23, 66, 67, 68…) 7. Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master Thesis, Univ. of Amsterdam, 2010 8. Niels Streekmann, Clustering-Based Support for Software Architecture Restructuring, Springer, 2011 (citation at pp. 39) 9. Aftab Hussain and Md. Saidur Rahman. 2013. A new hierarchical clustering technique for restructuring software at the function level. In Proceedings of the 6th India Software Engineering Conference (ISEC '13). ACM, New York, NY, USA, 4554. 10. Hewijin Jiau, Lee Wei Mar, Jinghong Chen, "OBEY: Optimal Batched Refactoring Plan Execution for Class Responsibility Redistribution," IEEE Transactions on Software Engineering, vol. 99, no. PrePrints, p. 1, , 2013 (ISI) – citation at pp. 22 Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 253-256 (ISI Proceedings) cited in 1. Kecia A.M. Ferreira, Mariza A.S. Bigonha, Roberto S. Bigonha, Luiz F.O. Mendes, Heitor C. Almeida, Identifying thresholds for object-oriented software metrics, Journal of Systems and Software, Available online 7 June 2011 (ISI) 2. Marouane Kessentini, Stephane Vaucher, and Houari Sahraoui. 2010. Deviance from perfection is a better criterion than closeness to evil when identifying risky code. In Proceedings of the IEEE/ACM international conference on Automated software engineering (ASE '10). ACM, New York, NY, USA, pp. 113-122 (ISI Proceedings) (citation at pp. 118) 3. Kecia A. M. Ferreira, Mariza A. S. Bigonha, Roberto S. Bigonha, Heitor C. Almeida, Roberta Coeli das Neves, Metrica de Coesao de Responsabilidade - A Utilidade de Metrica de Coesao na Identificacao de Classes com Problemas Estruturais, SBQS 2011, X SIMPÓSIO BRASILEIRO DE QUALIDADE DE SOFTWARE, 2011 (citation at pp. 10) 4. Heliomar Kann da Rocha Santos, RUMO AO REJUVENESCIMENTO AUTOMÁTICO DE SOFTWARE GUIADO POR ATRIBUTOS DE QUALIDADE, Dissertação apresentada ao Programa de PósGraduação em Computação da Universidade Federal Fluminense, 2011 (citation at pp. 35) 5. Kessentini, W.; Kessentini, M.; Sahraoui, H.; Bechikh, S.; Ouni, A., "A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection," Software Engineering, IEEE Transactions on , vol.40, no.9, pp.841,861, Sept. 1 2014, doi: 10.1109/TSE.2014.2331057 (ISI) Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112 (ISI) cited in 1. MS Levin, O Kruchkov, O Hadar, E Kaminsky, Combinatorial Systems Evolution: Example of Standard for Multimedia Information, INFORMATICA, 2009, Vol. 20, No. 4, 519–538 (citation at pp. 521) (ISI) 2. Mirjam SEPESY MAUCEC, Janez BREST, Reduction of Morpho-Syntactic Features in Statistical Machine Translation of Highly Inflective Language, INFORMATICA, 2010, Vol. 21, No. 1, 95–116 (citation at pp. 97) (ISI) 3. Hong Yu, Shuangshuang Chu, and Dachun Yang. Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. In Proceedings of the 5th international conference on Rough set and knowledge technology (RSKT'10), Jian Yu, Salvatore Greco, Pawan Lingras, Guoyin Wang, and Andrzej Skowron (Eds.). Springer-Verlag, Berlin, Heidelberg, LNAI 6401, 2010, pp. 687-694. DOI: 10.1007/978-3-642-16248-0_93 (ISI Proceedings) 4. Hong Yu; Shuangshuang Chu; Dachun Yang; , A semiautonomous clustering algorithm based on decision-theoretic rough set theory, Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on , vol., no., pp.477-483, 7-9 July 2010, doi: 10.1109/COGINF.2010.5599691 (ISI Proceedings) (citation at pp. 477) 5. Hong Yu, Zhanguo Liu and Guoyin Wang, Automatically Determining the Number of Clusters Using Decision-Theoretic Rough Set, ROUGH SETS AND KNOWLEDGE TECHNOLOGY, Lecture Notes in Computer Science, 2011, Volume 6954/2011, 504-513 (ISI Proceedings) 6. Gorla, Narasimhaiah, Ng, Vincent, Law, Dik, Improving database performance with a mixed fragmentation design, Journal of Intelligent Information Systems, Springer Netherlands, ISSN: 0925-9902, pp. 1-18, 2012 (ISI) 7. DX Wang, JL Xu, HC Yuan, Hierarchical clustering algorithm of the Minimum Risk, Applied Mechanics and Materials, Volumes 333 – 335, pp. 1410-1413, 2013 8. Hong Yu, Zhanguo Liu, Guoyin Wang, An automatic method to determine the number of clusters using decision-theoretic rough set, International Journal of Approximate Reasoning, Elsevier, Volume 55, Issue 1, Part 2, January 2014, Pages 101–115 (ISI) 9. Sirbu, A., Bocicor I, A dynamic approach for hierarchical clustering of gene expression data, IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), 2013, pp. 3-6 10. Sheeba, J.I.; Vivekanandan, K., "Low frequency keyword extraction with sentiment classification and cyberbully detection using fuzzy logic technique," Computational Intelligence and Computing Research (ICCIC), 2013 IEEE International Conference on , vol., no., pp.1,5, 26-28 Dec. 2013 11. J.L. Casteleiro-Roca, J.L. Calvo-Rolle, M.C. Meizoso-Lopez, A. Piñón-Pazos, B.A. Rodríguez-Gómez, Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump, Neurocomputing, Volume 150, Part A, 20 February 2015, Pages 90–98 (ISI) 12. Lukač, Niko, Žalik, Borut, Žalik, Krista Rizman, Sweep-Hyperplane Clustering Algorithm Using Dynamic Model, Informatica, vol. 25, no. 4, pp. 563-580, 2015 13. Sklyarov, V.; Skliarova, I.; Silva, J.; Sudnitson, A.; Rjabov, A., "Hardware accelerators for information retrieval and data mining," in Information and Communication Technology Research (ICTRC), 2015 International Conference on , vol., no., pp.202-205, 17-19 May 2015 14. A.M. Rajee, F. Sagayaraj Francis, Building Inter Cluster Movement Estimation (ICME) Model-A Step by Step Approach, Procedia Computer Science, Volume 46, 2015, Pages 210-215, ISSN 1877-0509, http://dx.doi.org/10.1016/j.procs.2015.02.013. Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a Directional Relation, Journal of Research and Practice in Information Technology, Vol. 41, Nr. 1, 2009, pp. 17-28 (ISI) cited in 1. Lan Huang, David Milne, Eibe Frank, and Ian H. Witten. Learning a concept-based document similarity measure. Journal of the American Society for Information Science and Technology, 2012 (citation at pp. 11) (ISI) 2. Miguel Angel Ríos Gaona, Alexander Gelbukh and Sivaji Bandyopadhyay, Recognizing Textual Entailment with Statistical Methods, Advances in Pattern Recognition, LNCS 6256, 2010, Springer, pp. 372-381 (ISI Proceedings) 3. Miguel Angel Ríos Gaona, Alexander Gelbukh and Sivaji Bandyopadhyay, Recognizing Textual Entailment Using a Machine Learning Approach, Advances in Pattern Recognition, LNCS 6438, 2010, Springer, pp. 177-185 (ISI Proceedings) 4. Perini, A. 2011. Detecting Textual Entailment with Conditions on Directional Text Relatedness Scores, Proceedings of the Second Text Analysis Conference (TAC 2009) November 16-17, 2009 National Institute of Standards and Technology Gaithersburg, Maryland, USA, pp. 1-4 (citation at pp. 1) 5. Moruz, M. A, Predication Driven Textual Entailment, Teza de doctorat, pp. 1-181, Universitatea Al. Ioan Cuza, Iasi, 2011 (citation at pp. 27) 6. Perini, A. 2012. DirRelCond3: Detecting Textual Entailment Across Languages With Conditions On Directional Text Relatedness Scores, First Joint Conference on Lexical and Computational Semantics (*SEM), pages 710–714, Montreal, Canada, June 7-8, 2012. Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent MultiAgent System for Clinical Decision Support, International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems - Medical Applications of the Compex Systems Biomedical Computing CANS' 2008, Targu Mures, IEEE Society Press, 2008, pp. 183-188 (ISI Proceedings) cited in 1. Rizwan Muhammad Saleem, Aslam Muhammad, A.M. Martinez-Enriquez, Remote Patient Monitoring and Healthcare Management Using Multi-agent Based Architecture, Mexican International Conference on Artificial Intelligence, pp. 118123, Ninth Mexican International Conference on Artificial Intelligence, 2010 (ISI Proceedings) (citation at pp. 2) 2. Iantovics, B., Cognitive Medical Multiagent Systems, BRAIN. Broad Research in Artificial Intelligence and Neuroscience, Volume 1, Issue 1 , January 2010 , ISSN 2067-3957pp. 12-21 (citation at pp. 14) 3. Madhavi Pradhan and G.R. Bamnote, Predictive Modeling of clinical data using soft computing -Diabetes a Case Study, Int. J. of Computer and Communications Vol. 1, No. 1, March 2011, pp. 31-37 (citation at pp. 34) 4. Acharya, S.; Dutta, A., "Coordination ontology for multi agent based distributed decision making," 2012 2nd IEEE International Conference on Parallel Distributed and Grid Computing (PDGC), , vol., no., pp.508,514, 6-8 Dec. 2012 (ISI Proceedings) 5. Bouzguenda, Lotfi, Turki, Manel, Designing an Architectural Style for Dynamic Medical Cross-Organizational Workflow Management System: An Approach Based on Agents and Web Services, Journal of Medical Systems, http://dx.doi.org/10.1007/s10916-014-0032-2, Springer US, March 2014 (ISI) 6. Flávio Luiz Seixas, Bianca Zadrozny, Jerson Laks, Aura Conci, Débora Christina Muchaluat Saade, A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳s disease and mild cognitive impairment, Computers in Biology and Medicine, Volume 51, 1 August 2014, Pages 140-158 (ISI) 7. Khan, A., Chen, H., Huszka, C. 2011. Semantic Policy-based Access Control Framework for Patient Medical Information, ACM Transactions on Embedded Computing Systems, Vol. 9, No.4, Article 39, 2011 (ISI) 8. Flávio Luiz Seixas, Bianca Zadrozny, Jerson Laks, Aura Conci, Débora Christina Muchaluat-Saade: A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comp. in Bio. and Med. 51: 140-158 (2014) (ISI) 9. Lotfi Bouzguenda, Manel Turki, Designing an Architectural Style for Dynamic Medical Cross-Organizational Workflow Management System: An Approach Based on Agents and Web Services, Journal of Medical Systems 04/2014; 38(4):32 (ISI) 10. Dutta, Animesh and Acharya, Sudipta and Krishna, Aneesh and Bhattacharya, Swapan. 2013. Virtual Medical Board: A distributed Bayesian agent based approach, in The 25th International Conference on Software Engineering and Knowledge Engineering (SEKE), Jun 27-29 2013, pp. 685-689. Boston, USA: Knowledge Systems Institute. (ISI) Cojocar, G.S, Şerban, G., On Evaluating Aspect Mining Techniques, ICCP 2007: Proceedings of the IEEE 3rd International Conference on Intelligent Computer Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania, pp. 217-224 (ISI Proceedings) cited in 1. Sayyed Garba Maisikeli, Aspect Mining Using Self-Organizing Maps With Method Level Dynamic Software Metrics as Input Vectors, PhD Thesis, Nova Southeastern University, 2009 (citation at pp.2) 2. Hong Yuan Liu, Wang, Jiang, Maximal tree method in Aspect Mining, Journal of Chongquing University, No. 10, 2009, pp. 1221-1225 3. Min Box Xu Baowen, Program dependence graph based on the Aspect Mining, Journal of SouthEast University. Natural Science, No. 2, 2008, pp. 239-243 Czibula, I.G., Serban, G., Hierarchical clustering based design patterns Identification, International Journal of Computers, Communications and Control, Vol. 3, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2008, Oradea, 2008, pp. 248-252 (ISI) cited in 1. D. Antonelli, P. Chiabert, Introducing Collaborative Practices in Small Medium Enterprises, Int. J. of Computers, Communications & Control, Vol. V (2010), No. 1, pp. 8-19 (citation at pp. 16) (ISI) 2. Anshu Parashar and Jitender Kumar Chhabra, Clustering Dynamic Class Coupling Data to Measure Class Reusability Pattern, HIGH PERFORMANCE ARCHITECTURE AND GRID COMPUTING Communications in Computer and Information Science, Springer, 2011, Volume 169, Part 1, 126-130 (ISI Proceedings) 3. Dario Antonelli, Caterina Petrigni, Investigation into the actual application of the diagnostic and therapeutic guidelines for colon cancer, Italian Journal of Public Health, Vol. 8, No.4, 2011, pp. 310-317 (citation at pp. 313) 4. Jitender Kumar Chhabra and Anshu Parashar, Clustering Dynamic Class Coupling Data Using K-Mean And Cosine Similarity Measure To Predict Class Reusability Pattern, 5th IEEE International Conference On Advanced Computing & Communication Technologies [ICACCT-2011] ISBN 81-87885-03-3, Pp. 280-285 (Pp. 281) 5. ANTONIO ADÁN, MIGUEL ADÁN, CONSENSUS STRATEGY FOR CLUSTERING USING RC-IMAGES, PATTERN RECOGNITION, VOLUME 47, ISSUE 1, JANUARY 2014, PAGES 402–417. (ISI) 6. Shouzheng Yang; Manzer, A.; Tzerpos, V., "Measuring the quality of design pattern detection results," Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International Conference on , vol., no., pp.53,62, 2-6 March 2015 7. HANEEN DABAIN, AYESHA MANZER, AND VASSILIOS TZERPOS. 2015. DESIGN PATTERN DETECTION USING FINDER. IN PROCEEDINGS OF THE 30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC '15). ACM, NEW YORK, NY, USA, 1586-1593. Czibula, G., Guran, A., Czibula, I.G., Cojocar, G.S., IPA - An Intelligent Personal Assistant Agent For Task Performance Support, ICCP 2009: Proceedings of the IEEE 5th International Conference on Intelligent Computer Communication and Processing, 2009, Cluj-Napoca, Romania, pp. 31-34 (ISI Proceedings) cited in 1. Piedad, Francisco J. Martinez, and Christian Guetl, Adding Semantic Web Knowledge to Intelligent Personal Assistant Agents, University of Zaragoza, Spain, pp. 1-12, (citation at pp. 3) 2. Chein-Shung Hwang and Ruei-Siang Fong, A Hybrid Recommender System based on Collaborative Filtering and Cloud Model, World Academy of Science, Engineering and Technology 75, 2011, pp. 500-505 (citation at pp. 500) 3. J Santos, JJPC Rodrigues, BMC Silva, J Casal, An IoT-based Mobile Gateway for Intelligent Personal Assistants on Mobile Health Environments, Journal of Network and Computer applications, 2016, published online (ISI) Şerban, G., Tătar, D., Word Sense Disambiguation for Untagged Corpus: Application to Romanian Language, Proceedings of CICling 2003, Mexico City, Mexic, in Computational Linguistics and Intelligent Text Processing, Lecture Notes in Computer Science N 2588, Springer-Verlag Berlin Heidelberg 2003, Alexander Gelbukh (Ed.), pp.270-275, ISBN 3-54000843-8 (ISI) cited in 1. Frunză, O., Inkpen, D., Nadeau, D., A Text Processing Tool for the Romanian Language, Workshop Eurolan 2005, Cluj-Napoca, Romania, (citation at pp. 7) 2. Auger, A., Roy, J., Expression of uncertainty in linguistic data, 11th International Conference on Information Fusion, Canada, 2008, pp. 1860-1867 (citation at pp. 1864) Şerban, G., Moldovan, G.S, A new k-means based clustering algorithm in Aspect Mining, Proceedings of the 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'06), Timisoara, Romania, 2006, pp.60-64 cited in 1. Mario Luca Bernardi, Giuseppe Antonio Di Lucca, A role-based crosscutting concerns mining approach to evolve Java systems towards AOP, Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) workshops, pp. 63-72, 2009 2. Ryan R. Rosario, An Automated Approach to Categorizing Wikipedia. Articles using a Self- Organizing Map and CART, University of California, Research Report, pp. 1-8 3. R., B. Nagarajan, S. Karthick, An Illustration of Mining Access Pattern (MAP) For Commercial Websites, Procedia Engineering, Volume 30, 2012, Pages 348–355 4. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220225. 5. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 6. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1) 7. Huang, Jin, Carminati, Federico, Betev, Latchezar, Zhu, Jianlin, Lu, Yansheng, Identifying composite crosscutting concerns with scatter-based graph clustering, Wuhan University Journal of Natural Sciences, 2012-04-01, Wuhan University, co-published with Springer, pp. 114-120, Vol.17, Issue: 2 8. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil 9. Lin Wang, Tomoyuki Aotani, and Masato Suzuki. 2013. Feature selection for clustering based aspect mining. In Proceedings of the 4th international workshop on Variability & composition(VariComp '13). ACM, New York, NY, USA, 7-12. 10. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) 11. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior, Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns: A Systematic Literature Review, Information Technolog: New Generations, Volume 448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29 March 2016 (ISI Proceedings) 12. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Cojocar, G.S., Czibula, G., On Clustering Based Aspect Mining, ICCP 2008: Proceedings of the IEEE 4th International Conference on Intelligent Computer Communication and Processing, 2008, Cluj-Napoca, Romania, pp. 129-136 (ISI Proceedings) cited in 1. Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Identifying Crosscutting Concerns Using Historical Code Changes, Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010, (Cape Town, South Africa), pp. 305-314 (citation at pp. 13) (ISI Proceedings) 2. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 3. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior, Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns: A Systematic Literature Review, Information Technolog: New Generations, Volume 448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29 March 2016 (ISI Proceedings) 4. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Czibula, G., Guran, A., Cojocar, G.S, Czibula, I.G., Multiagent Decision Support Systems based on Supervised Learning, 2008 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 353-358 (ISI Proceedings) cited in 1. Ronneesley M. Teles, Marcos Ivamoto, Leonardo H. S. Mello, Valdemar V. Graciano Neto, Cedric Luiz de Carvalho, Um Sistema de Apoio à Decisão baseado em Agentes para a Companhia Elétrica do Estado de Goiás, Workshop WESAAC 2010, Universitatea din Rio-Grande, pp. 32-40 (citation at pp. 34, 37) Tătar, D., Tămâianu, E., Czibula, G., Segmenting text by lexical chains distribution, KEPT 2009, Knowledge Engineering: Principles and Techniques, International Conference, BabesBolyai University, in Studia Informatica, 2009, pp. 33-36 (ISI Proceedings) cited in 1. M Scaiano, D Inkpen, R Laganière et al, Automatic Text Segmentation for Movie Subtitles, Advances in Artificial Intelligence, Springer Verlag , 2010 Petraşcu, V., Czibula, G., Sîrbu, D., Popa, M., Curşeu, D., Identifying the impact of global warming on population using a clustering based approach, 2010 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2010, pp. 294-299 (ISI Proceedings) cited in 1. LI, C.; SHIMAMOTO, S., An Open Traffic Light Control Model for Reducing Vehicles CO2 Emissions Based on ETC Vehicles, IEEE Transactions on Vehicular Technology, Vol. 61, Issue 1, pp. 97-119, 2012 (ISI) Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures Selection using Neural Networks, Knowledge and Information Systems, 34(1) pp. 171–192 (ISI) cited in 1. Sung-Kwun Oh, Ho-Sung Park, Wook-Dong Kim, Witold Pedrycz, A new approach to radial basis function-based polynomial neural networks: analysis and design, Knowledge and Information Systems, September 2012, pp. 1-31 doi= 10.1007/s10115-012-0551-4 (ISI) 2. Ninawe, Swapnil S.; Venkataram, Pallapa, "A Method of designing an Access Mechanism for Social Networks," Communications (NCC), 2013 National Conference on , vol., no., pp.1,5, 15-17 Feb. 2013 doi: 10.1109/NCC.2013.6488048 (ISI Proceedings) 3. Lin Wang, Bo Yang, Yuehui Chen, Zhenxiang Chen, Hongwei Sun, Accelerating FCM neural network classifier using graphics processing units with CUDA, Applied Intelligence, January 2014, Volume 40, Issue 1, pp 143-153 (ISI) 4. Lin Wang; Bo Yang; Abraham, A., "Prediction of Concrete Strength Using Floating Centroids Method," Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on , vol., no., pp.988,992, 13-16 Oct. 2013 5. Guoqiang Li, Peifeng Niu, Combustion optimization of a coal-fired boiler with double linear fast learning network, Soft Computing, October 2014, DOI 10.1007/s00500-014-1486-3 (ISI) 6. Pritpal Singh, A brief review of modeling approaches based on fuzzy time series, International Journal of Machine Learning and Cybernetics, P 1-24, 2015 7. Pritpal Singh, Fuzzy Time Series Modeling Approaches: A Review, Applications of Soft Computing in Time Series Forecasting Volume 330 of the series Studies in Fuzziness and Soft Computing pp 11-39, November 2015 8. P. Singh, Rainfall and financial forecasting using fuzzy time series and neural networks based model, International Journal of Machine Learning and Cybernetics, pp 1-16, online 31 May 2016 9. L. Wang; B. Yang; Y. Chen; X. Zhang; J. Orchard, "Improving Neural-Network Classifiers Using Nearest Neighbor Partitioning," in IEEE Transactions on Neural Networks and Learning Systems , vol.PP, no.99, pp.1-13 doi: 10.1109/TNNLS.2016.2580570 (ISI) Şerban, G., Tarţa, A., Moldovan, G.S, A Learning Interface Agent for User Behavior Prediction, Proceedings of HCI International 2007, China, LNCS 4552: HCI Intelligent Multimodal Interaction Environments by J. Jacko, ISBN 978-3-540-73108-5, pp. 508-517 (ISI Proceedings) cited in 1. Yongjun Kim, Sung-Bae Cho, A Recommendation Agent for Mobile Phone Users Using Bayesian Behavior Prediction, 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, pp. 283-288 (citation at pp. 284) (ISI Proceedings) 2. Schafer, J., Drozd, M., Detecting network attacks using behavioural models, IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011, Volume: 2, pp. 753 - 758 (ISI Proceedings) Şerban, G., Câmpan, A., Incremental Clustering Using a Core-Based Approach, Proceedings of The 20th International Symposium on Computer and Information Science (ISCIS'05), Istanbul, Turkey, 2005, in Computer and Information Sciences-ISCIS 2005, Lecture Notes in Computer Science N 3733, Springer-Verlag Berlin Heidelberg 2005, pp.854-863, P. Yolum et al. (Eds), ISBN: 3-540-29414-7 (ISI) cited in 1. Sarra Ben Hariz and Zied Elouedi, DK-BKM: Decremental K Belief K-Modes Method, SUM’10, Lecture Notes in Computer Science, 2010, Volume 6379/2010, pp. 84-97 (ISI Proceedings) 2. Sarra Ben Hariz, Zied Elouedi, IK-BKM: An incremental clustering approach based on intra-cluster distance, Computer Systems and Applications, ACS/IEEE International Conference on, pp. 1-8, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010, 2010 (ISI Proceedings) 3. Ben Hariz, Sarra, Elouedi, Zied, Ranking-Based Feature Selection Method for Dynamic Belief Clustering, Adaptive and Intelligent Systems, Lecture Notes in Computer Science, 2011, pp. 308-319, Volume 6943 (ISI Proceedings) 4. Joan Albert Lopez-Vallverdu, Knowledge-Based Incremental Induction of Clinical Algorithms, PhD Thesis, Universitat Rovira i Virgili, Tarragona, 2012 (citation at pp. 32) 5. Sirbu, A., Bocicor I, A dynamic approach for hierarchical clustering of gene expression data, IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), 2013, pp. 3-6 6. Sowjanya, A. M.; Shashi, M., NEW PROXIMITY ESTIMATE FOR INCREMENTAL UPDATE OF NON-UNIFORMLY DISTRIBUTED CLUSTERS, International Journal of Data Mining & Knowledge Management Process . Sep2013, Vol. 3 Issue 5, p91-109. 19p. 7. Sarra Ben Hariz, Zied Elouedi, New dynamic clustering approaches within belief function framework, Intelligent Data Analysis, Volume 18, Number 3/2014, Pages 409-428 Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering, ISCIS 2007, Proceedings of The 22th International Symposium on Computer and Information Sciences, November 7-9, Ankara, Turkey, 2007, pp. 262-267 (ISI Proceedings) cited in 1. Mehmet Kaya, A New Cohesion Metric and Restructuring Technique for Object Oriented Paradigm, Technical Report, SYR-EECS-2011-11, November 2011, Syracuse University - Department of EECS, pp. 1-9 (citation at pp. 4) 2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A Systematic Literature Review, Information and Software Technology, 58(2015), pp. 231-249(ISI) 3. Amarjeet Prajapati , Jitender Kumar Chhabra, Human Interface and the Management of Information:Information, Design and Interaction, An Efficient Scheme for Candidate Solutions of Search-Based Multi-objective Software Remodularization, Volume 9734 of the series Lecture Notes in Computer Science pp 296-307, 2016 (ISI Proceedings) Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space Model Based Clustering Approach, AOSD'06, The 5th Aspect-Oriented Software Development, LATE workshop, 2006, pp. 36-40 cited in 1. Paria Parsamanesh, Amir Abdollahi Foumani & Constantinos Constantinides, Mining anomalies in object-oriented implementations through execution traces, Proceedings of ICSOFT 2006, pp. 177-189 (citation at pp. 178) (ISI Proceedings) 2. Jin Huang, Yansheng Lu, Jing Yang, Aspect Mining Using Link Analysis, Frontier of Computer Science and Technology, Japan-China Joint Workshop on, pp. 312-317, 2010 Fifth International Conference on Frontier of Computer Science and Technology, 2010 (ISI Proceedings) 3. Jijun Cao, Jing Xie, Feng Chen, DSD-D: A Distributed Algorithm for Constructing High-Stability Application-Layer Multicast Tree, Frontier of Computer Science and Technology, Japan-China Joint Workshop on, pp. 122-128, 2010 Fifth International Conference on Frontier of Computer Science and Technology, 2010 (ISI Proceedings) 4. Rocco Oliveto, Traceability Management meets Information Retrieval Methods “Strengths and Limitations”, PhD Thesis, 2008, University of Salerno (citation at pp. 46) 5. Esteban Sait Abait, Aspect Mining Mediante Análisis Dinámico y Reglas de Asociación, PhD Thesis, Universitatea Buenos Aires, 2008 (citation at pp. 44, 74) 6. Sayyed Garba Maisikeli, Aspect Mining Using Self-Organizing Maps With Method Level Dynamic Software Metrics as Input Vectors, PhD Thesis, Nova Southeastern University, 2009 (citation at pp.17, 21, 23, 47, 52, 53, 60, 64, 65, 71, 78, 83, 85) 7. Pradeep Rai, Shubha Singh, A Survey of Clustering Techniques, International Journal of Computer Applications (0975 – 8887), Volume 7– No.12, October 2010, pp. 1-5 8. Omnia Ossama, Hoda M. O. Mokhtar, Mohamed E. El-Sharkawi, Clustering Moving Objects Using Segments Slopes, International Journal of Database Management Systems ( IJDMS ), Vol.3, No.1, February 2011, pp. 36-48 (citation at pp. 39) 9. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. 10. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 11. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1,2) 12. Omnia Ossama, Hoda M. O. Mokhtar, Mohamed E. El-Sharkawi, Segment k-means Clustering Algorithm, ICCTA 2010, 23-25 October 2010, Alexandria, Egypt, pp. 3642 (citation at pp. 38) 13. Sonia Haiduc, Supporting Text Retrieval Query Formulation In Software Engineering, Wayne State University, PhD Thesis, 2013 14. Lin Wang, Tomoyuki Aotani, and Masato Suzuki. 2013. Feature selection for clustering based aspect mining. In Proceedings of the 4th international workshop on Variability & composition (VariComp '13). ACM, New York, NY, USA, 7-12. 15. Zhu, Jianlin, Huang, Jin, Zhou, Daicui, Carminati, Federico, Zhang, Guoping, He, Qiang, Identifying composite crosscutting concerns through semi-supervised learning, Software: Practice and Experience, http://dx.doi.org/10.1002/spe.2234, 2013 (ISI) 16. McFadden, R.R.; Mitropoulos, F.J., "Survey of aspect mining case study software and benchmarks," Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,5, 4-7 April 2013 (ISI Proceedings) 17. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) 18. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Czibula, I.G., Şerban, G., Improving Systems Design Using a Clustering Approach, IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.12, December 2006, pp. 40-49 cited in 1. Jehad Al Dallal, The impact of accounting for special methods in the measurement of object-oriented class cohesion on refactoring and fault prediction activities, Journal of Systems and Software, Volume 85, Issue 5, May 2012, Pages 1042–1057, ISSN 0164-1212, 10.1016/j.jss.2011.12.006 (ISI) 2. Jehad Al Dallal, Constructing models for predicting extract subclass refactoring opportunities using object-oriented quality metrics, Information and Software Technology, Volume 54, Issue 10, October 2012, Pages 1125-1141, ISSN 09505849, 10.1016/j.infsof.2012.04.004. (http://www.sciencedirect.com/science/ article/pii/S0950584912000754) (ISI) 3. Martin Faunes, Marouane Kessentini, and Houari Sahraoui. 2011. Software clustering by example. In Proceedings of the 13th annual conference companion on Genetic and evolutionary computation (GECCO '11), Natalio Krasnogor (Ed.). ACM, New York, NY, USA, 245-246. DOI=10.1145/2001858.2001996 http://doi.acm.org/10.1145/2001858.2001996 (ISI Proceedings) 4. Marija Katic, Software redesign methods, pp. 1-7 (citation at pp. 5) 5. AMAL ABD EL-RAOUF, Hierarchical Clustering of Distributed Object-Oriented Software Systems: A Generic Solution for Software-Hardware Mismatch, Wseas Transactions on Computers, Issue 11, Volume 8, November 2009, pp. 1780-1789 (citation at pp. 1788) 6. Marija Katic, K Fertalj, Challenges And Discussion Of Software Redesign, ICIT 2009, The 4th International Conference on Information Technology , Iordan, 2009, pp. 1-7 (citation at pp. 4) 7. Martin Faunes, Marouane Kessentini, and Houari Sahraoui. 2011. Deriving highlevel abstractions from legacy software using example-driven clustering. In Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Research (CASCON '11). IBM Corp., Riverton, NJ, USA, 188-199. 8. Pan, Weifeng, Li, Bing, Ma, Yutao, Liu, Jing, Qin, Yeyi, Class structure refactoring of object-oriented softwares using community detection in dependency networks, Frontiers of Computer Science in China, 2009-09-01, Vol. 3, Issue 3, Higher Education Press, co-published with Springer-Verlag GmbH, pp. 396- 404 (ISI) 9. Bharti Chhabra , Ashish Oberoi , Sunil Kumar , SIMILARITY AND DISSIMILARITY MEASURE FOR CLASS CLUSTERING, IJREAS Volume 2, Issue 2 (February 2012), pp. 175-181 (citation at pp. 177) 10. Jehad Al Dallal and Lionel C. Briand. 2012, A Precise Method-Method InteractionBased Cohesion Metric for Object-Oriented Classes, ACM Trans. Softw. Eng. Methodol. 21, 2, Article 8 (March 2012), 34 pages. DOI=10.1145/2089116.2089118 http://doi.acm.org/10.1145/2089116.2089118 (ISI) 11. Aftab Hussain and Md. Saidur Rahman. 2013. A new hierarchical clustering technique for restructuring software at the function level. In Proceedings of the 6th India Software Engineering Conference (ISEC '13). ACM, New York, NY, USA, 4554. 12. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A Systematic Literature Review, Information and Software Technology, 58(2015), pp. 231-249 (ISI) 13. Faunes Carvallo, Martin, Improving automation in model-driven engineering using examples, PhD Thesis, Univeristy of Montreal, 2013 14. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) Czibula, I.G., Şerban, G., Hierachical Clustering for Software Systems Restructuring, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 4, December 2007, pp. 43-51 cited in 1. Marija Katic, K Fertalj, Towards an Appropriate Software Refactoring Tool Support, Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE, 2009, pp. 140-145 (citation at pp. 2,3) (ISI Proceedings) 2. 3. Marija Katic, Software redesign methods, pp. 1-7 (citation at pp. 5) Marija Katic, K Fertalj, Challenges And Discussion Of Software Redesign, ICIT 2009, The 4th International Conference on Information Technology , Iordan, 2009, pp. 1-7 (citation at pp. 4) 4. Jai Bhagwan, Ashish Oberoi, Software Modules Clustering: An Effective Approach for Reusability, Journal of Information Engineering and Applications, Vol. 1, No. 4, 2011, pp. 18-27 (citation at pp. 3) 5. Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master Thesis, Univ. of Amsterdam, 2010 6. Syed M. Ali Shah, Jens Dietrich, Catherine McCartin, "Making Smart Moves to Untangle Programs," csmr, pp.359-364, 2012 16th European Conference on Software Maintenance and Reengineering, 2012 (ISI Proceedings) 7. Hewijin Jiau, Lee Wei Mar, Jinghong Chen, "OBEY: Optimal Batched Refactoring Plan Execution for Class Responsibility Redistribution," IEEE Transactions on Software Engineering, vol. 99, no. PrePrints, p. 1, , 2013 (ISI) – citation at pp. 22 8. SOFTWARE ARCHITECTURE RECOVERY THROUGH SIMILARITY-BASED GRAPH CLUSTERING JIANLIN ZHU, JIN HUANG, DAICUI ZHOU ZHONGBAO YIN, GUOPING ZHANG, and QIANG HE, International Journal of Software Engineering and Knowledge Engineering 2013 23:04, 559-586 (ISI) 9. Kanchan Chaudhary, Dr. Anuj Sharma, Implementation of Two Steps Clustering Using Telecommunication System, IJTKMI journal, Volume 7 • Number 2 • Jan– June 2014 pp. 42-48 (ISSN 0973-4414) 10. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect Mining Techniques, Proceedings of the 3rd Workshop on Linking Aspect Technology and Evolution, Vancouver, Canada, LATE'07, 2007, pp. 40-44 cited in 1. Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, Sushil K. Bajracharya, A Theory of Aspects as Latent Topics, OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA, pp. 543-562 (citation at pp. 559) (ISI Proceedings) 2. Fernando Sérgio Barbosa, Comparing Three Aspect Mining Techniques, DSIE'08 — Doctoral Symposium on Informatics Engineering 2008, University of Porto, pp. 1-12 (citation at pp. 11) 3. SAMEER SUNDRESH, REQUEST-BASED MEDIATED EXECUTION, PhD Thesis, University of Illinois at Urbana-Champaign, 2009 (citation at pp. 106) 4. Alexender Dreiling, Aktueller Stand und zukünftige Herausforderungen im Aspect Mining, Proceedings 2nd Student Conference on Software Engineering and Database Systems, 2009, pp. 41-48 (citation at pp. 46) 5. Sunday O. Olatunji, Syed U. Idrees, , Yasser S. Al-Ghamdi, Jarallah Saleh Ali AlGhamdi, Mining Software Repositories – A Comparative Analysis, IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 (citation at pp. 164, 165) 6. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior, Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns: A Systematic Literature Review, Information Technolog: New Generations, Volume 448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29 March 2016 (ISI Proceedings) Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp.69-78 cited in 1. Lai, Hien, Visani, Muriel, Boucher, Alain, Ogier, Jean-Marc, An experimental comparison of clustering methods for content-based indexing of large image databases, Pattern Analysis & Applications, Springer London, pp. 1-22, 2012 (ISI) 2. Christos E. Christodoulopoulos and Kyparissia A. Papanikolaou, A Group Formation Tool in a E-Learning Context, 19th IEEE International Conference on Tools with Artificial Intelligence, 2007, pp. 117-123 (citation at pp. 118) (ISI Proceedings) 3. Esteban Sait Abait, Aspect Mining Mediante Análisis Dinámico y Reglas de Asociación, PhD Thesis, Universitatea Buenos Aires, 2008 (citation at pp. 44, 74) 4. Christos E. Christodoulopoulos and Kyparissia A. Papanikolaou, Investigation of Group Formation using Low Complexity Algorithms, 11th International Conference on User Modeling, Corfu, Greece, 2007, pp. 57-60 (citation at pp. 58) (ISI Proceedings) 5. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. 6. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 7. Li-Jen Kao; Yo-Ping Huang, "A robust fuzzy clustering method with outliers influence free," Fuzzy Theory and it's Applications (iFUZZY), 2012 International Conference on , vol., no., pp.342,347, 16-18 Nov. 2012 8. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Şerban, G., A New Reinforcement Learning Algorithm, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVIII(1), 2003, pp.3-14 cited in 1. E Shakshuki, AW Matin, RL-Agent that Learns in Collaborative Virtual Environment, Third International Conference on Information Technology: New Generations (ITNG'06), IEEEComputer Society, pp. 90-95 (citari la pp. 90, 91, 92) (ISI Proceedings) 2. Maysoon Abdulkhair, A Multilingual Automated Web Usability Evaluation Agent, Ph.D. Thesis, The University of Sheffield, February 2004 (citation at pp.63) 3. E Shakshuki, AW Matin, Intelligent learning agent for collaborative virtual workspace, International Journal of Pervasive Computing and Communications, Vol. 6 Iss: 2, 2010, pp.131 – 162 Şerban, G., Pintea, M.-C., Heuristics and learning approaches for solving the Traveling Salesman Problem, Studia Universitatis Babes-Bolyai Informatica, vol. XLIX (2), 2004, pp. 27-36 cited in 1. An Te NGUYEN, COCoFil2 : Un nouveau système de filtrage collaboratif basé sur le modèle des espaces de communautés, Ph.D. Thesis, Universitatea JOSEPH FOURIER – GRENOBLE I, 2006 (citation at pp. 143) 2. Vescan (Fanea), A., Construction Approaches for Component{Based Systems, Ph.D. Thesis, Babes-Bolyai University, Cluj-Napoca, 2008 (citation at pp.27) Şerban, G., Real Time Learning in Agent Based Systems, Proceedings of the 4th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing , Timisoara, Romania, 2002, pp.337-347, ISBN: 973-585-785-5 cited in 1. N. Sahli, B. Moulin, EKEMAS, an Agent-Based Geosimulation Approach to Support Continual Planning in the Real-Word, Applied Intelligence, Springer, 2009, Volume 31, Number 2, pp. 188-209 (ISI) 2. N. Sahli, LA GÉOSIMULATION ORIENTÉE AGENT : UN SUPPORT POUR LA PLANIFICATION DANS LE MONDE RÉEL, These, DÉPARTEMENT D’INFORMATIQUE ACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL QUÉBEC, 2006 (citation at pp. 157) Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns Using Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume 8, 2009, pp. 386395 cited in 1. Kittisak Kerdprasop and Nittaya Kerdprasop, Parallelization of K-means clustering on multi-core processors. In Proceedings of the 10th WSEAS international conference on Applied computer science (ACS'10), Hamido Fujita and Jun Sasaki (Eds.). World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2010, 472-477 (ISI Proceedings) (citation at pp. 1) 2. Kittisak Kerdprasop and Nittaya Kerdprasop, A lightweight method to parallel kmeans clustering, INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION, Issue 4, Vol. 4, 2010, pp. 144-153 (citation at pp. 2) Şerban, G., LASG – A Logic Architecture for Intelligent Agents, Studia Universitatis “BabeşBolyai”, Informatica, XLVII(2), 2002, pp.13-22 cited in 1. Bogdan Patrut, Agenti inteligenti in sisteme de monitorizare distribuita, teza doctorat, 2008 Şerban, G., Tătar, D., UBB System at Senseval-3, Proceedings of Senseval-3: The Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, ACL 2004, Barcelona , July 2004, pp.226-228 cited in 1. Mandana Hamidi , Ali Borji , Saeed Shiry Ghidary, Persian Word Sense Disambiguation,15th ICEE conference, Tehran, Iran, 15-17 May 2007, pp.114-118 (citation at pp. 1) Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Decision support system for software maintenance and evolution, KEPT 2009, Knowledge Engineering: Principles and Techniques, International Conference, Babes-Bolyai University, 2009, pp. 181-184 cited in 1. Esteban J. Palomo, Enrique Dominguez, Rafael M. Luque, and Jose Munoz, A SelfOrganized Multiagent System for Intrusion Detection, Lecture Notes in Computer Science 5680, pp. 84–94, 2009 (citation at pp. 84) (ISI Proceedings) Czibula, I.G., Czibula (Serban), G., Hierarchical Clustering based Automatic Refactorings Detection, WSEAS Transactions on Electronics, Issue 7, Vol.5, July 2008, pp. 291-302 cited in 1. AMAL ABD EL-RAOUF, Hierarchical Clustering of Distributed Object-Oriented Software Systems: A Generic Solution for Software-Hardware Mismatch, Wseas Transactions on Computers, Issue 11, Volume 8, November 2009, pp. 1780-1789 (citation at pp. 1782) 2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A Systematic Literature Review, Information and Software Technology, 58(2015), pp. 231-249 (ISI) Câmpan, A., Şerban, G., Marcus, A., Relational Association Rules and Error Detection, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 31-36 cited in 1. Arazay Armas Santos, “HERRAMIENTA PARA LA DETECCIÓN DE ERRORES USANDO REGLAS DE ASOCIACIÓN ”, Lucrare de Diploma, University Las Villas, 2009, pp. 1-19 (citation at pp. 10) Moldovan, G.S, Şerban, G., Quality Measures for Evaluating the Results of Clustering Based Aspect Mining Techniques, Proceedings of International workshop TEAM'06, 2006, pp. 13-16 cited in 1. Pradeep Rai, Shubha Singh, A Survey of Clustering Techniques, International Journal of Computer Applications (0975 – 8887), Volume 7– No.12, October 2010, pp. 1-5 2. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. Czibula, I.G., Czibula, G., A partitional clustering algorithm for improving the structure of object-oriented software systems, Studia Universitatis "Babes-Bolyai", Informatica, LIII(2), 2008, pp. 105-114 cited in 1. Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master Thesis, Univ. of Amsterdam, 2010 2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 2) Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain algorithm for Word Sense Disambiguation, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 41-49 cited in 1. Mert, E., Word sense disambiguation for Turkish, ISCIS 2009, Proceedings of The 24th International Symposium on Computer and Information Sciences, 2009, pp. 205-210 Moldovan, G.S, Şerban, G., A Formal Model for Partitioning Based Aspect Mining, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 3 - September 2007, pp. 19-26 cited in 1. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. 2. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting concerns identification, Proceedings of the 8th International Conference on Software Engineering, parallel and distributed systems (SEPADS '09), Cambridge, UK, 2009, pp. 111-116 cited in 1. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. 2. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil 3. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 4. I. Grbavac, K. Fertalj, V. Batoš, Design of template generator and its role in software lifecycle, INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014, pp. 127-134 5. McFadden, R.R., Survey of aspect mining case study software and benchmarks, Proceedings of IEEE, Southeastcon, 2013, pp. 4-7 (ISI Proceedings) 6. Ivan Grbavac, Improvement of Software Development Process with use of Template Generator, Technivcal Report, Faculty of Electrical Engeneering an Computing, University of Zagreb, 2013 7. EK Fillus, Caampi: Uma abordagem baseada em técnicas de agrupamento para mineração de aspectos e identificação de pontos de corte., PhD Thesis, 2012, UFPR, Brasil 8. EK Fillus, SR Vergilio, Uma Avaliaç ao do Uso de Diferentes Algoritmos de Agrupamento e Medidas de Distância para Mineraç ao de Aspectos, echnicla Report, 2012, UFPR, Brasil 9. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) Şerban, G., Moldovan, G.S, A New Genetic Clustering Based Approach in Aspect Mining, The 8th WSEAS International Conference on Mathematical Methods And Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti, 2006, pp. 135-140 cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 2. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil 3. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Şerban, G., Moldovan, G.S, A Graph Algorithm for Identification of Crosscutting Concerns, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.3-10 cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 2. Zhu, Jianlin, Huang, Jin, Zhou, Daicui, Carminati, Federico, Zhang, Guoping, He, Qiang, Identifying composite crosscutting concerns through semi-supervised learning, Software: Practice and Experience, http://dx.doi.org/10.1002/spe.2234, 2013 (ISI) 3. McFadden, R.R.; Mitropoulos, F.J., "Survey of aspect mining case study software and benchmarks," Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,5, 4-7 April 2013 (ISI Proceedings) Czibula. I.G., Czibula, G., Cojocar, G.S., Hierarchical Clustering for Identifying Crosscutting Concerns in Object Oriented Software Systems, , INFOCOMP Journal of Computer Science, Volume 8, Number 3, Brazilia, 2009, pp. 21-28. cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1) 3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting concerns identification, Proceedings of the 8th International Conference on Software Engineering, parallel and distributed systems (SEPADS '09), Cambridge, UK, 2009, pp. 111-116 cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 2. I. Grbavac, K. Fertalj, V. Batoš, Design of template generator and its role in software lifecycle, INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014, pp. 127-134 3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil 4. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector space models for use in aspect mining. In Proceedings of the 50th Annual Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225. 5. McFadden, R.R., Survey of aspect mining case study software and benchmarks, Proceedings of IEEE, Southeastcon, 2013, pp. 4-7 6. Ivan Grbavac, Improvement of Software Development Process with use of Template Generator, Technical Report, Faculty of Electrical Engeneering an Computing, University of Zagreb, 2013 7. EK Fillus, Caampi: Uma abordagem baseada em técnicas de agrupamento para mineração de aspectos e identificação de pontos de corte., PhD Thesis, 2012, UFPR, Brasil 8. EK Fillus, SR Vergilio, Uma Avaliaç ao do Uso de Diferentes Algoritmos de Agrupamento e Medidas de Distância para Mineraç ao de Aspectos, Technical Report, 2012, UFPR, Brasil 9. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50) Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns Using Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume 8, 2009, pp. 386395 cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) Cojocar, G.S., Czibula, G., Czibula. I.G., A Comparative Analysis of Clustering Algorithms in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LIV(1), 2009, pp. 75-84 cited in 1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March 2012 (ISI Proceedings) 2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1) 3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil 4. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering, ISCIS 2007, Proceedings of The 22th International Symposium on Computer and Information Sciences, November 7-9, Ankara, Turkey, 2007, pp. 262-267 cited in 1. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of Software Engineering and Applications, 2012, 5, Published Online July 2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1) 2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A Systematic Literature Review, Information and Software Technology, 58(2015), pp. 231-249 (ISI) Tătar, D., Şerban, G., Lupea, M., Text Entailment Verification with Text Similarities, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 68, 2007, Cluj-Napoca, pp. 33-40 cited in 1. Perini, A. 2012. DirRelCond3: Detecting Textual Entailment Across Languages With Conditions On Directional Text Relatedness Scores, First Joint Conference on Lexical and Computational Semantics (*SEM), pages 710–714, Montreal, Canada, June 7-8, 2012. Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain algorithm for Word Sense Disambiguation, KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 41-49 cited in 1. Lin Lin Yu et al., A Multi-Strategy Word Sense Disambiguation Method, 2012, Applied Mechanics and Materials, 182-183, 2109 Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem Using a Distributed Q-Learning Approach, International Journal of Computers, Volume 5, Issue 3, 2011, pp. 404-413 cited in 1. Ionel Muscalagiua, Anca Iordana, Mihaela Osacia, Manuela Pãnoiu, Modeling and simulation of the protein folding problem in DisCSPNetlogo, AWERProcedia Information Technology & Computer Science 2 (2012) 137-144 2. Ionel Muscalagiu, Horia Emil Popa, Manuela Panoiu, Viorel Negru, Multi-agent Systems Applied in the Modelling and Simulation of the Protein Folding Problem Using Distributed Constraints, Multiagent System Technologies, Lecture Notes in Computer Science Volume 8076, 2013, pp 346-360 3. F. Campeotto, A. Dovier, and E. Pontelli, Protein Structure Prediction on GPU: a Declarative Approach in a Multi-agent Framework, International Conference on Parallel Processingm, ICPP conference (IEEE) http://icpp2013.ens-lyon.fr/ Lyon (FR), October 2013 (ISI Proceedings) 4. Manuel Rodriguez-Pascual, Rafael Ma Mayo-García, Ignacio M. Llorente, MONTERA: A FRAMEWORK FOR EFFICIENT EXECUTION OF MONTE CARLO CODES ON GRID INFRASTRUCTURES, COMPUTING AND INFORMATICS, VOL 32, NO 1 (2013), pp. 113-144 (ISI) 5. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft Computing, Available online 16 October 2014, ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI) 6. BF Gauna, Modular Multi-Agent Reinforcement Learning of Linked MultiComponent Robotic Systems, PhD Thesis, 2012, The University of the Basque 7. B Fernandez-Gauna, M Graña, Distributed Round-Robin Q-Learning, Universidad de Pais-Vasco, Technical Report, 2012 8. B Fernandez-Gauna, Etxeberria-Agiriano, Improved Distributed Round-Robin QLearning for Linked Multicomponent Robotic System control, Universidad de PaisVasco, Technical Report, 2012 9. Fernandez-Gauna B, Etxeberria-Agiriano I, Graña M (2015) Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning. PLoS ONE 10(7): e0127129. doi:10.1371/journal.pone.0127129 (ISI) Şerban, G., Czibula, I.G., Câmpan, A., A Programming Interface For Medical Diagnosis Prediction, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 21-30 cited in 1. Jeetesh Kumar Jain, Nirupama Tiwari, Manoj Ramaiya, A Survey: On Association Rule Mining, International Journal of Engineering Research and Applications (IJERA), Vol. 3, Issue 1, January -February 2013, pp.2065-2069 2. Jain, J.K.; Tiwari, N.; Ramaiya, M., "Mining Positive and Negative Association Rules from Frequent and Infrequent Pattern Using Improved Genetic Algorithm," Computational Intelligence and Communication Networks (CICN), 2013 5th International Conference on , vol., no., pp.516-521, 27-29 Sept. 2013 3. Kumudha, P, Venkatesan, R., Engimuri, P. G. Radhika, Product Metrics Based Predictive Classification of Software Using RAR Mining and Naive Bayes Approach, International Journal of Applied Engineering Research. 2015, Vol. 10 Issue 7, p17375-17391. 17p. 4. Mir Md. Jahangir Kabir , Shuxiang Xu, Byeong Ho Kang, Zongyuan Zhao, A New Evolutionary Algorithm for Extracting a Reduced Set of Interesting Association Rules, Chapter Neural Information Processing, Volume 9490 of the series Lecture Notes in Computer Science pp 133-142, 10 November 2015 Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical Incremental Clustering, Proceedings of the 7th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05), Timisoara, Romania, IEEE Computer Society Press, 2005, pp. 77-82, D. Zaharia (Ed.), ISBN 07695-2453-2 cited in 1. Muhammad Shoaib, Wang-Cheol Song, Clustering Objects in Heterogeneous Information Network Using Fuzzy C-Mean, Mobile, Ubiquitous, and Intelligent Computing Lecture Notes in Electrical Engineering Volume 274, 2014, pp 179-184 Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Using Software Metrics for Automatic Software Design Improvement, Studies in Informatics and Control, ISSN 12201766, vol. 21 (3), pp. 249-258, 2012 cited in 1. D. Bocu, R. Bocu, Remarks on Interface Oriented Software Systems Modelling, INT J COMPUT COMMUN, ISSN 1841-9836 8(5):662-672, October, 2013. (ISI) Câmpan, A., Şerban, G., Truţă, M., Marcus, A., An Algorithm for the Discovery of Arbitrary Length Ordinal Association Rules, DMIN'06, The 2006 International Conference on Data Mining, Las Vegas, USA, Sven F. Crone (Ed.), CSREA Press, USA, ISBN: 1-60132-004-3, pp. 107-113, cited in 1. BAN, TIBERIU, FUZZY COMPUTING FOR COMPLEXITY LEVEL OF EVALUATION TESTS, Studia Universitatis Babes-Bolyai, Informatica . Mar2013, Vol. 58 Issue 1, p81-92. 12p 2. Bocicor, M.I. A STUDY ON USING ASSOCIATION RULES FOR PREDICTING PROMOTER SEQUENCES, Studia Universitatis Babes-Bolyai, Informatica . Jun2012, Vol. 57 Issue 2, p32-42 Şerban, G., Câmpan, A., Czibula, I.G., A Programming Interface For Finding Relational Association Rules, International Journal of Computers, Communications and Control, Vol. I/2006, Proceedings of the International Conference on Computers, Communications and Control, ICCCC 2006, Oradea, 2006, pp. 934-944 cited in 1. MARIAN, ZSUZSANNA, A STUDY ON ASSOCIATION RULE MINING BASED SOFTWARE DESIGN DEFECT DETECTION, Studia Universitatis Babes-Bolyai, Informatica . Mar2013, Vol. 58 Issue 1, p42-57 2. Bocicor, Maria Iuliana, A STUDY ON USING ASSOCIATION RULES FOR PREDICTING PROMOTER SEQUENCES, Studia Universitatis Babes-Bolyai, Informatica . Jun2012, Vol. 57 Issue 2, p32-42 Czibula, G., Bocicor, M. I., Czibula, I.G., Promoter Sequences Prediction Using Relational Association Rule Mining, Evolutionary Bioinformatics, Vol. 8, 2012, pp. 181-196 cited in 1. G. Karli, PROMOTER PREDICTION USING IREM (INDUCTIVE RULE EXTRACTION METHOD), International Journal of Engineering Research and Science & Technology, Vol. 3, No. 1, pp. 63-70, 2014 2. Günay Karl, Şenol Doğan, Adem Karadağ, Computational Approach for Promoter Identification with data Mining Techniques, IOSR Journal of Engineering (IOSRJEN) Vol. 04, Issue 01 (January. 2014), PP 31-41, 2014 3. Tannu Kumari and Kamal Raj Pardasani. 2015. Mining amino acid association patterns in class B GPCRs. Int. J. Bioinformatics Res. Appl. 11, 3 (May 2015), 219232. Czibula, G., Cojocar, G.S., Czibula, I.G., Evaluation Measures For Partitioning Based Aspect Mining Techniques, International Journal of Computers, Communications and Control, 6(1), 2011, pp. 72-80 cited in 1. McFadden, R.R.; Mitropoulos, F.J., Survey and analysis of quality measures used in aspect mining, Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,8, 4-7 April 2013 2. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952) Tătar, D., Mihiş, A., Czibula G., Lexical Chains Cohesion Segmentation in Summarization, SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 95-101 cited in 1. Huang, Chuen-Min, Chang, Yen-Jia, Applying a Lightweight Iterative Merging Chinese Segmentation in Web Image Annotation, Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science Volume 7988, Springer Berlin Heidelberg, 2013, pp. 183-194 Bocicor, M. I., Czibula, G., Czibula, I.G., A Reinforcement Learning Approach for Solving the Fragment Assembly Problem, Proceedings of the 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2011, IEEE Computer Society, pp. 191-198, 2011 cited in 1. Ko-Wei Huang, Jui-Le Chen, Chu-Sing Yang, Chun-Wei Tsai, A memetic particle swarm optimization algorithm for solving the DNA fragment assembly problem, Neural Computing and Applications, July 2014, DOI 10.1007/s00521-014-1659-0 (ISI) 2. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft Computing, Available online 16 October 2014, ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI) Czibula, G., Bocicor, M.I., Czibula, I.G., A Distributed Reinforcement Learning Approach for Solving Optimization Problems, in Recent Researches in Communications and IT, Proceedings of the 5th International Conference on Communications and Information Technology (CIT '11), Greece, 2011, pp. 25-30 cited in 1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft Computing, Available online 16 October 2014, ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI) Czibula G., Bocicor, M.I., Czibula, I.G., A Reinforcement Learning Model for Solving the Folding Problem, IJCTA - International Journal of Computer Technology and Applications, Vol. 2, Issue 1, 2011, pp. 171-182 cited in 1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft Computing, Available online 16 October 2014, ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI) Czibula, G., Bocicor, M.I., Czibula, I.G., An Experiment on Protein Structure Prediction using Reinforcement Learning, Studia Babes-Bolyai Informatica, LVI (1), 2011, pp. 25-34 cited in 1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft Computing, Available online 16 October 2014, ISSN 1568-4946, http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI) Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect Prediction using Relational Association Rule Mining, Information Sciences, Vol. 264, April 2014, pp. 260-278 cited in 1. Ezgi Erturk, Ebru Akcapinar Sezer, A Comparison of Some Soft Computing Methods for Software Fault Prediction, Expert Systems with Applications, Available online 23 October 2014, ISSN 0957-4174, http://dx.doi.org/10.1016/j.eswa.2014.10.025. (http://www.sciencedirect.com/science/article/pii/S0957417414006496) (ISI) 2. K.R.Sekar, S.Devasena, K.S.Ravichandran, and J Sethuraman, WS COMPONENT SELECTION BY IMPROVISED HIGH HIT RATIO USING SIMPLE JACCARD COSINE DISTANCES WITH MODI’S COST EFFECTIVENESS, ARPN Journal of Engineering and Applied Sciences, Vol. 9, No. 10, 2014 3. Nguyen, Giang, Le, Tuong, Vo, Bay, Le, Bac, EIFDD: An efficient approach for erasable itemset mining of very dense datasets, J Applied Intelligence, , Springer US, 8 2015-01-15 (ISI) 4. Fedja Hadzic, Michael Hecker, Andrea Tagarelli, Ordered subtree mining via transactional mapping using a structure-preserving tree database schema, Information Sciences, volume 310, 2015, pp. 97 - 117 (ISI) 5. Liuqian Jin, Jun Liu, Yang Xu, Xin Fang, A novel rule base representation and its inference method using the evidential reasoning approach, Knowledge-Based Systems, Available online 2 July 2015, ISSN 0950-7051, http://dx.doi.org/10.1016/j.knosys.2015.06.018 (ISI) 6. Ezgi Erturk, Ebru A. Sezer, Software Fault Inference Based on Expert Opinion, Journal of Software, vol. 10, no. 6, 2015, pp. 757-766 7. Kumudha, P, Venkatesan, R., Engimuri, P. G. Radhika, Product Metrics Based Predictive Classification of Software Using RAR Mining and Naive Bayes Approach, International Journal of Applied Engineering Research. 2015, Vol. 10 Issue 7, p17375-17391. 17p. 8. Cong Jin, Shu-Wei Jin, Prediction approach of software fault-proneness based on hybrid artificial neural network and quantum particle swarm optimization, Applied Soft Computing, Volume 35, October 2015, Pages 717-725, ISSN 1568-4946 (ISI) 9. Almasi, M., Abadeh, M.S., Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules, KnowledgeBased Systems volume 89, issue , year 2015, pp. 366 – 384 (ISI) 10. Alenezi, Mamdouh; Abunadi, Ibrahim, Evaluating Software Metrics as Predictors of Software Vulnerabilities, INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS Volume: 9 Issue: 10 Pages: 231-239 , 2015 (ISI) 11. Tomar, Divya; Agarwal, Sonali, Prediction of Defective Software Modules Using Class Imbalance Learning, APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING Article Number: 7658207 Published: 2016 (ISI) 12. Liu, Wangshu; Liu, Shulong; Gu, Qing; et al., Empirical Studies of a Two-Stage Data Preprocessing Approach for Software Fault Prediction, IEEE TRANSACTIONS ON RELIABILITY Volume: 65 Issue: 1 Pages: 38-53 Published: MAR 2016 (ISI) 13. Yasir Javed, Mamdouh Alenezi, Defectiveness Evolution in Open Source Software Systems, Procedia Computer Science, Volume 82, 2016, Pages 107-114, ISSN 18770509 14. Ming Cheng, Guoqing Wu, Min Jiang, Hongyan Wan, Guoan You, Mengting Yuan, Heterogeneous Defect Prediction via Exploiting Correlation Subspace, SEKE 2016, Software Engineering and Knowledge Engineering, 2016 15. Naufal, M.F., Rochimah, S., Software complexity metric-based defect classification using FARM with preprocessing step CFS and SMOTE a preliminary study (2015) 2015 International Conference on Information Technology Systems and Innovation, ICITSI 2015 16. Kumudha, P., Venkatesan, R., Hybrid GSA-CSSA based emotional ELMAN neural network classifier for software defect prediction, International Journal of Applied Engineering Research, Volume 11, Issue 5, 1 March 2016, Pages 3255-3270 17. Kumari, D., Rajnish, K., A new approach to find predictor of software fault using association rule mining, International Journal of Engineering and Technology, Volume 7, Issue 5, 1 November 2015, Pages 1671-1684 18. Saini, P.K., Tomar, D., Agarwal, S., High numeric coherent association rule mining with a particular categorical consequent class attribute (2015) 9th International Conference on Industrial and Information Systems, ICIIS 2014 19. Ming Cheng, Guoqing Wu, Min Jiang, Hongyan Wan, Guoan You, Mengting Yuan, Heterogeneous Defect Prediction via Exploiting Correlation Subspace, Proceedings of SEKE 2016, DOI: 10.18293/SEKE2016-090 Czibula, G., Czibula, I.G., Găceanu, R.D., A Support Vector Machine Model For Intelligent Selection of Data Representations, Applied Soft Computing, Volume 18, May 2014, Pages 70–81 cited in 1. Jian Hua Cao, Fault Diagnosis for Electrical Control System of Automobile Based on Support Vector Machine, Applied Mechanics and Materials (Volume 666), 2014, pp. 203-207 2. Philippe Lauret, Cyril Voyant, Ted Soubdhan, Mathieu David, Philippe Poggi, A benchmarking of machine learning techniques for solar radiation forecasting in an insular context, Solar Energy, Volume 112, February 2015, Pages 446-457, ISSN 0038-092X, http://dx.doi.org/10.1016/j.solener.2014.12.014 (ISI) 3. Zhiquan Qi, Bo Wang, Yingjie Tian, Peng Zhang, When Ensemble Learning Meets Deep Learning: a New Deep Support Vector Machine for Classification, KnowledgeBased Systems, Available online 30 May 2016 (ISI) Czibula, I.G., Şerban, G., Identifying Design Patterns in Object-Oriented Software Systems Using Unsupervised Learning, 2008 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 347-352 cited in 1. Soliman et al, Patterns Mining from Java Source Code, Int.J. of Software Engineering, IJSE Vol.4 No.2 July 2011, pp. 19-40 Czibula, G., Crișan C.G., Pintea, M.C, Czibula, I.G., Soft computing approaches on the bandwidth problem, Informatica, Vilnius, Lithuania, 2013, Vol. 24, No. 1, pp. 1–12 cited in 1. Guilherme Oliveira Chagas, Sanderson L. Gonzaga de Oliveira, Metaheuristic-based Heuristics for Symmetric-matrix Bandwidth Reduction: A Systematic Review, Procedia Computer Science, Volume 51, 2015, Pages 211-220 Bocicor, M. I., Czibula, G., Czibula, I.G., A Distributed Q-Learning Approach to Fragment Assembly, SIC Journal, Studies in Informatics and Control, Vol. 20, Issue. 3, 2011, pp. 221232 cited in 1. Fernandez-Gauna B, Etxeberria-Agiriano I, Graña M (2015) Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning. PLoS ONE 10(7): e0127129. doi:10.1371/journal.pone.0127129 (ISI) Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Detecting Software Design Defects Using Relational Association Rule Mining, Knowledge and Information Systems, Vol. 42, Number 3, 2015, pp. 545-577 (IF=1.782) cited in 1. H. He, T. Yin, J. Dong, P. Zhang, J. Ren, Efficient mining of high utility software behavior patterns from software executing traces, International Journal of Innovative Computing, Information and Control, 11(5), 2015, pp. 1779-1793 2. Guoyan Huang, Rui Gao, Jiandi Wang, Jiaming Yan, and Jiadong Ren, AN EFFICIENT ALGORITHM FOR MINING HIGH UTILITY CONTIGUOUS PATTERNS FROM SOFTWARE EXECUTING TRACES, International Journal of Innovative Computing, Information and Control, Volume 12, Number 3, June 2016 , pp. 1349-4198 Sȋrbu, A., Czibula, G., Bocicor, M.I., Dynamic clustering of gene expression data using a fuzzy approach, The 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, IEEE Computer Society, pp. 220-227, 2014 cited in 1. Jan Janoušek , Petr Gajdoš, Michal Radecký, Václav Snášel, Application of Bioinspired Methods Within Cluster Forest Algorithm, Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Volume 427 of the series Advances in Intelligent Systems and Computing pp 237-247 Şerban, G., Cojocar, G.S, A New Hierarchical Agglomerative Clustering Algorithm in Aspect Mining, BCI'07, Proceedings of the 3rd Balkan Conference in Informatics, 27-29 September 2007, Sofia, Bulgaria, pp. 143-152 cited in 1. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior, Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns: A Systematic Literature Review, Information Technolog: New Generations, Volume 448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29 March 2016 (ISI Proceedings) Moldovan, G.S, Şerban, G., A Study on Distance Metrics for Partitioning Based Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.53-60 cited in 1. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved from NSUWorks, College of Engineering and Computing. (952)