Download 1. Mehmet Kaya, A New Cohesion Metric and Restructuring

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MEMORIU DE ACTIVITATE
I
Date biografice
Nume: CZIBULA (ŞERBAN)
Prenume: GABRIELA
Data naşterii: 30 aprilie 1969
Locul naşterii: mun. Mediaş, jud. Sibiu
Naţionalitatea: română
Starea civilă: căsătorită
Domiciliu: str. Năsăud nr. 22, ap. 105, Cluj-Napoca
II
Studii medii
1983 - 1987
Studiile liceale la Liceul de Matematică-Fizică “Axente Sever” Mediaş,
absolvit cu examen de bacalaureat cu media 10
1975 - 1983
Clasele primare şi gimnaziul la Şcoala Generală nr. 5, Mediaş, jud. Sibiu
III
Studii universitare
1 Martie 2003
 susţinerea publică a tezei de doctorat “Tehnici de realizare a Sistemelor
Inteligente”, coducător ştiinţific prof. dr. MILITON FRENŢIU
 doctor în Informatică, distincţia “cum laude”
1998 - 2003
Stagiul de pregătire în cadrul studiilor de doctorat la Facultatea de Matematică
şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca
1987 - 1992
Studii superioare la secţia de informatică a Facultăţii de Matematică,
Universitatea “Babeş-Bolyai” Cluj-Napoca; am absolvit facultatea cu diplomă
de merit, cu media anilor de studii 9.98 şi cu media 10 la examenul de licenţă
IV
Activitatea ştiinţifică în timpul studiilor
În timpul gimnaziului şi liceului am participat la olimpiadele de matematică şi fizică.
La marea majoritate dintre ele am ajuns la faza judeţeană, unde am ocupat de mai multe ori
locuri între I şi III. Am activat în cadrul cercului de matematică al elevilor. În timpul
facultăţii am participat cu rezultate bune la Concursuri de Programare.
V
Activitate profesională
Poziţii ocupate
octombrie 2009 –
Profesor la Catedra de Limbaje şi Metode de Programare a Facultăţii de
Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca
octombrie 2005 – septembrie 2009
Conferenţiar la Catedra de Limbaje şi Metode de Programare a Facultăţii de
Matematică şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca
februarie 2002 - octombrie 2005
Lector la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică
şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca
octombrie 1998 - februarie 2002
Asistent la Catedra de Limbaje şi Metode de Programare a Facultăţii de Matematică
şi Informatică, Universitatea “Babeş-Bolyai”, Cluj-Napoca
ianuarie 1998 - septembrie 1998
Informatician la S.C. “Sport Ancada Prodimpex” Cluj-Napoca
septembrie 1992 - ianuarie 1998
Profesor de informatică la “Şcoala Naţională de Gaz” Mediaş
VI
Activitate didactică
În timpul activităţii mele la “Şcoala Naţională de Gaz” am predat următoarele discipline:
 “Programarea Calculatoarelor” - limbajul de programare Pascal la clasele a IX-a şi a X-a;
 “Sisteme de Calcul”, clasa a IX-a;
 “Bazele Informaticii”, clasele a X-a şi a XII-a;
 “Programarea Calculatoarelor” - limbajul de programare C la clasa a XI-a;
 “Informatică de Gestiune” - limbajul FoxPro la clasa a XII-a;
 “Informatică aplicată” - clasa a XII-a;
 laboratoare la materiile “Programarea Calculatoarelor” la clasele a IX-a, a X-a, a XI-a ţi
la materia “Informatică de Gestiune” la clasa a XII-a.
În timpul activităţii mele la Catedra de Informatică a Universităţii “Babeş-Bolyai” am predat
următoarele discipline:
 “Algoritmică şi programare”, seminar şi laborator pentru anul I de studii (informatică);
 “Programarea Calculatoarelor”, seminar şi laborator pentru anul I de studii (informatică şi
matematică-informatică);
 “Programare Orientată Obiect”, seminar şi laborator pentru anul I de studii (informatică şi
matematică-informatică);
 “Fundamentele programării”, curs, seminar şi laborator pentru anul I de studii
(informatică);
 “Metode evoluate de Programare”, laborator pentru anul II de studii (informatică);
 “Programare Logică şi Funcţională”, curs şi laborator pentru anul II de studii (informatică
şi matematică-informatică);
 “Inteligenţă Artificială”, curs, seminar şi laborator pentru anul IV de studii (informatică);
 “Birotică”, curs şi laborator pentru anul III de studii (matematică);
 “Proiect Colectiv”, laborator pentru anul III de studii (informatică);
 “Proiect Individual”, laborator pentru anul II de studii (informatică);




“Structuri de Date”, curs şi seminar pentru anul I de studii (informatică şi matematicăinformatică);
“Agenţi Inteligenţi Cooperativi”, curs şi laborator, în limba engleză, pentru studii
aprofundate (master);
“Tehnici de realizare a Sistemelor Inteligente”, curs şi laborator pentru anul IV de studii
(informatică şi matematică-informatică).
“Instruire automată”, curs şi laborator, în limba engleză, pentru studii aprofundate
(master);
VII Activitate profesională extradidactică
În timpul activităţii mele la “Şcoala Naţională de Gaz”, Mediaş;
- am îndrumat elevi pentru Olimpiadele Judeţene, Naţionale şi Internaţionale de
Informatică, obţinând următoarele rezultate în perioada 1992 - 1997:
 la Olimpiadele Judeţene: 1 loc III, 7 locuri II, 5 locuri I;
 la Olimpiadele Naţionale: 2 menţiuni, 1 premiu III, 1 premiu I;
 la Olimpiada Internaţională: 1 premiu II.
- am îndrumat elevi pentru Concursurile şcolare de Informatică (Programare şi Creaţie),
obţinând în perioada 1992 - 1997 1 menţiune, 3 locuri III, 1 loc II şi 3 locuri I;
- am elaborat un pachet de produse program pentru Unităţile de Învăţământ
 program de salarizare, evidenţă personal;
 program de evidenţă a situaţiei şcolare;
 program de gestiune a bibliotecii;
 program pentru concursurile de admitere în liceu şi bacalaureat.
- am activat ca secretar de redacţie la “Revista Şcolii Naţionale de Gaz”;
- am organizat şi îndrumat elevii în cadrul Cercului de Informatică organizat la “Şcoala
Naţională de Gaz” în perioada 1992 - 1997;
- am publicat articole în Revista şi Gazeta de Informatică a Şcolii Naţionale de Gaz,
Mediaş;
- am susţinut referate în cadrul Cercurilor Metodice Interjudeţene pe judeţul Sibiu;
- am elaborat un program de evidenţă contabilă pentru firma “Assa-Ştefănel”, Mediaş.
În timpul activităţii mele la “Şcoala Naţională de Gaz”, Mediaş, am elaborat un program de
evidenţă contabilă pentru firma “ASSA-ŞTEFĂNEL” din Mediaş.
În timpul activităţii mele la S.C. “Sport Ancada Prodimpex” Cluj-Napoca, am elaborat un
program de gestiune a firmei.
În timpul activităţii mele la Catedra de Informatică a Universităţii “Babeş-Bolyai”:
- am contribuit la organizarea ediţiilor 1999 şi 2000 ale Olimpiadei de Informatică, faza
judeţeană, judeţul Cluj (formularea subiectelor şi evaluarea concurenţilor);
- am contribuit la organizarea ediţiilor 1999-2007 ale Concursului de Programare “Grigore
Moisil”, organizat în cadrul Facultăţii de Informatică (formularea subiectelor şi evaluarea
concurenţilor).
În perioada 2000 - 2001 am colaborat la realizarea produsului program “DIC2001”, un
dicţionar electronic, realizat de firma “MultiSoft” SRL, Cluj-Napoca.
VIII Domenii de interes ştiinţific
Printre domeniile mele de interes ştiinţific menţionez: Inteligenţa Artificială (Agenţi
inteligenţi, Sisteme Multiagent, Instruire automată), Ingineria soft, Programare logică şi
funcţională, Bioinformatică.
IX
Activitate ştiinţifică
Publicaţii
Lucrări ştiintifice: 154
53 publicaţii cotate ISI (dintre care 25 în reviste ISI şi 28 la conferinţe ISI), 84
publicaţii indexate BDI (INSPEC, ACM, DBLP, MathematicalReviews), 17
publicaţii neindexate
Cărți: 8
Manuale: 4
Rezultate originale (teoretice şi aplicative)
Dintre cele mai importante rezultate ştiinţifice obţinute menţionez următoarele :
Agenţi inteligenţi şi Sisteme multiagent: folosirea Modelelor Markov Ascunse ca modele
matematice pentru agenţi inteligenti care învaţă; agent inteligent instruit pe baza antrenării
Modelelor Markov Ascunse; agent inteligent pentru dezambiguarea sensurilor cuvintelor;
agent ALSO bazat pe logică; agent inteligent de învăţare prin întărire URU (Utility-RewardUtility); agent de învăţare în timp real RTL (Real Time Learning Agent); agenţi inteligenţi
adaptivi pentru interfeţe utilizator; agent pentru asistarea utilizatorului prin predicţia
comportamentului utilizator; sistem multiagent de suport decizional pentru evoluţia
sistemelor informatice; sistem multiagent de suport decizional bazat pe invatare supervizata,
sistem multiagent pentru configurarea dinamică a structurilor de date; 3 cărţi în domeniul
sistemelor inteligente, a agenţilor inteligenţi şi a sistemelor multiagent, 1 manual în
domeniul Inteligenţei Artificiale (4 ediţii).
Logică: o noua arhitectură logică pentru agenti inteligenţi (Arhitectura Logica folosind Stive
de Obiective); antrenarea gramaticilor independente de context folosind Modele Markov
Ascunse; determinarea extensiilor în logici default folosind o abordare bazată pe restricţii.
Instruire (învăţare) automată: algoritmul de învăţare în timp real RTL (Real Time
Learning Algorithm), teorema de covergenţă a algoritmului; învăţare cooperativă în Data
Mining; algoritmul de învăţare prin întărire URU (Utility-Reward-Utility), teorema de
convergenţă a algoritmului; abordări de învăţare pentru problema comis voiajorului.
Analiza clusterilor: tehnici de clustering pentru fragmentarea orizontală adaptivă în baze de
date orientate obiect; clustering ierarhic incremental bazat pe nuclee; clustering partiţional
incremental bazat pe nuclee; algoritmi de clustering adaptiv.
Analiza asocierilor: algoritm pentru descoperirea regulilor de asociere ordinale de orice
lungime dintr-un set de date; reguli de asociere ordinale pentru detecţia erorilor.
Prelucrarea limbajului natural: sistem pentru dezambiguarea sensurilor cuvintelor; un
experiment de dezambiguare pentru limba română; tehnici de clustering a cuvintelor pentru
sisteme de Question Answering, algoritmi de dezambiguare în lanţ a cuvintelor şi algoritmi
pentru recunoaşterea inferenţelor textuale, algoritmi pentru sumarizare automată.
Ingineria Soft: o interfaţă pentru programarea simulărilor de învăţare prin întărire; o interfaţă
de programare pentru determinarea regulilor de asociere ordinale; o abordare de clustering
bazata pe model vectorial în Aspect Mining pentru identificarea funcţionalităţilor
transversale; o interfaţă de programare pentru clustering partiţional; o interfaţă de programare
pentru predicţia diagnosticului medical; algoritmi de clustering pentru îmbunătăţirea
structurii de clase a unui sistem informatic prin identificarea refactorizărilor necesare;
algoritmi de clustering pentru problema identificării funcţionalităţilor transversale; algoritmi
bazati pe căutare pentru identificarea şabloanelor de proiectare; o abodare bazată pe reţele
neuronale pentru configurarea dinamică a structurilor de date; 2 cărţi în domeniul programării
logice şi funcţionale şi 1 carte în domeniul fundamentelor programării.
Modelare formală: modelarea formală a problemei de aspect mining, modele matematice
pentru problemele de restructurare a sistemelor informatice şi identificarea şabloanelor de
proiectare.
Inteligenţa Artificială aplicată:
 în Software Engineering: modele de învăţare supervizată (reţele neuronale şi SVM)
pentru selectarea dinamică a celei mai bune structuri de date pentru implementarea
unui TAD, folosirea reţelelor cu autoorganizare SOM pentru identificarea
refactorizărilor şi aspectelor.
 în Bioinformatică: model de învăţare prin întărire pentru predicţia structurii
bidomensionale a proteinelor, asamblarea fragmentelor ADN, clasificator bazat pe
reguli de asociere relaţionale pentru clasificarea secvenţelor de gene (promoteri),
model de ȋnvățare prin ȋntărire pentru problema ordonării temporale.
X
Participări la conferinţe
1. CANS '2008, Complexity and Intelligence of the Artificial and Natural Complex Systems.
Medical Applications of the Complex Systems. Biomedical Computing, Târgu-Mureş,
Romania, November 8-10, 2008
2. KEPT 2007, Knowledge Engineering: Principles and Techniques, Babeş-Bolyai
University, Cluj-Napoca, June 6-8, 2007
3. 1st IEEE International Conference on Computers, Communications and Control, Băile
Felix, Oradea, June, 2006
4. The 7th International Workshop on Symbolic and Numeric Algorithms for Scientific
Computing , Timişoara, Romania, September 26-29, 2006
5. The 20th International Symposium on Computer and Information Sciences, Istanbul,
Turkey, October 26-28, 2005
6. The Fifth Joint Conference on Mathematics and Computer Science, Debrecen, Hungary,
June 9-12, 2004 – conferinţă invitată
7. Intelligent Information Systems - New Trends in Intelligent Text Processing and Web
Mining, Zakopane, Poland, June 2-5, 2003
8. Appia-Gulp-Prode 2003 - Joint Conference on Declarative Programming, Reggio
Calabria, Italia, September 3-5, 2003
9. Simpozionul Zilele Academice Clujene, Cluj Napoca, June 2002
10. The 4th International Workshop on Symbolic and Numeric Algorithms for Scientific
Computing , Timişoara, Romania, October 9-12, 2002
11. Advanced Educational Technologies, AET Workshop, Târgu Mureş, March 8-16, 2001
12. The Fourth Joint Conference on Mathematics and Computer Science, Felix, Romania,
June 5-10, 2001
13. The Second International Workshop of Central and Eastern Europe on Multi-Agent
Systems, Krakow, Polonia, September 26-29, 2001
XI
Activităţi editoriale
1. Referent pentru revista Studia Universitatis “Babeş-Bolyai”, Informatica, 2004-.
2. Referent pentru conferinţa ISCIS'05, The 20th International Symposium on Computer and
Information Sciences, Turkey, 2005 (ISI)
 Zafer Bingul, Cuneyt Oysu, Comparison of Stochastic and Approximate
Algorithmsfor One-Dimensional Cutting Problems - for ISCIS'05, The 20th
International Symposium on Computer and Information Sciences, Turkey, 2005
 Xinyu Zhao, Zuoquan Lin, A Logical Model for Rational Agents Incorporating
Belief, Capability and Promise - for ISCIS'05, The 20th International Symposium
on Computer and Information Sciences, Turkey, 2005 (ISI)
3. Referent pentru conferinţa KEPT 2007, “Knowledge Engineering: Principles and
Techniques”, Babeş-Bolyai University, Cluj-Napoca
4. Referent pentru conferinţa CANS '2008, Complexity and Intelligence of the Artificial and
Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical
Computing, Târgu-Mureş, Romania, 8-10 Noiembrie, 2008
5. Referent pentru conferinţa KEPT 2009, “Knowledge Engineering: Principles and
Techniques”, Babeş-Bolyai University, Cluj-Napoca
6. Referent pentru conferinţa UICS 2009, Understanding Intelligent Complex Systems,
Târgu-Mureş, Romania, 22-23 Octombrie, 2009
7. Membră în colectivul ştiinţific al revistei “BRAIN. Broad research in Artificial
Intelligence and Neuroscience”, EduSoft, 2010
8. Referent al revistei JRPIT, Journal of Research and Practice in Information Technology
(ISI), 2010
9. Referent
pentru
conferinţa
MACS
2010,
8th
Joint
Conference
on
Mathematics and Computer Science, Slovacia, 2010
10. Referent al revistei IJCCC, International Journal of Computers, Communication and
Control (ISI), 2011
11. Referent pentru conferinta MedDecSup 2011, Next generation on Intelligent medical
Decision Support Systems, Tȃrgu-Mureș, 2011.
12. Referent pentru conferinţa KEPT 2011, “Knowledge Engineering: Principles and
Techniques”, Babeş-Bolyai University, Cluj-Napoca
13. Referent al revistei IJCCC, International Journal of Computers, Communication and
Control (ISI), 2012
14. Referent al revistei “African Journal of Agricultural research” (ISI), 2012
15. Referent al revistei “IET Software” (ISI), 2013
16. Referent al revistei “International Journal of Pattern Recognition and Artificial
Intelligence” (ISI), 2014
17. Referent al revistei “Journal of Systems and Software” (ISI), 2014
18. Referent al revistei “Soft computing” (ISI), 2014, 2016
XII Membru în comisii de doctorat
1. Referent la teza de doctorat “Agenţi cu capacităţi cognitive”, doctorand Iantovics Barna,
conducător ştiinţific prof. dr. Dan Dumitrescu, 2007
2. Referent la teza de doctorat “Aspect Mining. Formalisation, New Approaches,
Evaluation”, doctorand Cojocar Grigoreta, conducător ştiinţific prof. dr. Militon Frenţiu,
2008
3. Referent la teza de doctorat “Combinatorial optimization with bio-inspired computing”,
doctorand Pintea Camelia-Mihaela, conducător ştiinţific prof. dr. Dan Dumitrescu, 2008
4. Referent la teza de doctorat “Textual Entailment”, doctorand Adrian Iftene, conducător
ştiinţific prof. dr. Dan Cristea, 2009
5. Referent la teza de doctorat “Algoritmi evolutivi în VLSI-CAD”, doctorand Doina
Logofătu, conducător ştiinţific prof. dr. Dan Dumitrescu, 2010
6. Referent la teza de doctorat “Predication driven Textual Entailment”, doctorand Mihai
Alex Moruz, conducător ştiinţific prof. dr. Dan Cristea, 2011
7. Referent la teza de doctorat “Agent based Pattern Recognition”, doctorand Radu Dan
Găceanu, doctorand co-tutelă Universitatea Babeș-Bolyai-Universitatea Eotvos Lorand
Budapesta, conducător ştiinţific prof. dr. Horia F. Pop (UBB), dr. László Kozma (ELTE),
2012
8. Membră ȋn comisia de susținere publică a tezei de doctorat “Intelligent Models for
Robotic Behaviour, Decision Making and Environment Interaction”, doctorand Hunor
Sandor Jakab, doctorand co-tutelă Universitatea Babeș-Bolyai-Universitatea Eotvos
Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop (UBB), dr. Zoltán Istenes
(ELTE), 2012 (membră ELTE, președinte UBB)
9. Președinte ȋn comisia de susținere publică a tezei de doctorat “Functional modeling of
operating systems”, doctorand Pali Gabor Janos, doctorand co-tutelă Universitatea BabeșBolyai-Universitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F.
Pop (UBB), dr. Tamás Kozsik Istenes (ELTE), 2012 (membră ELTE, președinte UBB)
10. Referent la teza de doctorat “Metode robuste de detecție a obiectelor cu aplicații în
detecția facială”, doctorand Szidonia Lefkovits, conducător ştiinţific prof. dr. Horia F.
Pop, 2012
11. Referent la teza de doctorat “Model learning for robot control”, doctorand Bocsi Attila
Botond, conducător ştiinţific prof. dr. Horia F. Pop, 2012
12. Referent la teza de doctorat “Machine learning in computer vision and string processing”,
doctorand Radu Tudor Ionescu, conducător ştiinţific prof. dr.Denis Enăchescu, 2013
13. Președinte ȋn comisia de susținere publică a tezei de doctorat “Metode fuzzy de asistare a
deciziilor multicriteriale”, doctorand Delia Tușe, conducător ştiinţific prof. dr. Bazil Pârv
XIII Membru în organizaţii ştiinţifice şi profesionale
1. 2014-prezent Membră ȋn comisia CNATDCU de Informatică.
XIV Conducere doctorat
1. Bocicor Maria-Iuliana (2010-2013) Titlu teză: „Machine learning models for solving
problems in bioinformatics” – 2013 titlul de Doctor ȋn Informatică, distincția „Excelent”
2. Marian Zsuzsanna-Edit (2011-2014) Titlu teză: „Machine learning based software
development” – 2014 titlul de Doctor ȋn Informatică, distincția „Excelent”
3. Rus Adela (2012-2015) Titlu teză: „Dynamic learning for supervised and unsupervised
classification” – doctorat în co-tutelă cu Insa Rouen, Franța
4. Mircea Ioan-Gabriel (2013-2016) Titlu teză: „Applied machine learning”
5. Ionescu Vlad-Sebastian (2014-2017) Titlu teză: „Applied computational intelligence
techniques”
XV
Îndrumare doctoranzi
1. Doctorand Radu Dan Găceanu, doctorand co-tutelă Universitatea Babeș-BolyaiUniversitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop, 2012
- doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta
2. Doctorand Hunor Sandor Jakab, doctorand co-tutelă Universitatea Babeș-BolyaiUniversitatea Eotvos Lorand Budapesta, conducător ştiinţific prof. dr. Horia F. Pop, 2012
- doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta
3. Doctorand Bocsi Attila Botond, conducător ştiinţific prof. dr. Horia F. Pop, 2012 doctorat în co-tutelă cu Universitatea Eotvos Lorand, Budapesta
4. Doctorand Ovidiu Şerban, conducător ştiinţific prof. dr.Horia F. Pop, 2013 - doctorat în
co-tutelă cu Insa Rouen, Franța
5. Doctorand Alina Miron, conducător ştiinţific prof. dr.Horia F. Pop, 2013 - doctorat în
co-tutelă cu Insa Rouen, Franța
6. Mihai Popescu (2015-2018) - Titlu teză: „Coordination and conectivity in fleets of
robots”, conducător ştiințific prof. dr. Olivier Simonin - doctorat Insa Lyon, Franța
XVI Membru în comitete de organizare sau comitete ştiinţifice ale
conferinţelor
1. Membră în comitetul ştiinţific al conferinţei KEPT 2007, “Knowledge Engineering:
Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca
2. Membră în comitetul ştiinţific al workshop-ului BICS '2008, Bio-Inspired Computational
Methods Used for Difficult Problem Solving. Development of Intelligent and Complex
Systems, Târgu-Mureş, Romania, 5-7 Noiembrie, 2008
3. Membră în comitetul ştiinţific al workshop-ului CANS '2008, Complexity and
Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the
Complex Systems. Biomedical Computing, Târgu-Mureş, Romania, 8-10 Noiembrie,
2008
4. Membră în comitetul ştiinţific al conferinţei KEPT 2009, “Knowledge Engineering:
Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca, 2009
5. Membră în comitetul ştiinţific al simpozionului internaţional UICS '2009, Understanding
Intelligent Complex Systems, Târgu-Mureş, Romania, 22-23 Octombrie, 2009
6. Membră în comitetul comitetul ştiinţific al conferinţei ConsILR 2010, “Resurse
lingvistice şi instrumente pentru prelucrarea limbii române”, Bucureşti, 2010
7. Membră în comitetul ştiinţific al conferinței MedDecSup 2011, Next generation on
Intelligent medical Decision Support Systems, Tȃrgu-Mureș, 2011.
8. Membră în comitetul ştiinţific al conferinţei KEPT 2011, “Knowledge Engineering:
Principles and Techniques”, Babeş-Bolyai University, Cluj-Napoca, 2011
9. Membră în comitetul de organizare și comitetul ştiinţific al școlii de vară EUROLAN
2011, Babeş-Bolyai University, Cluj-Napoca, 2011
10. Membră în comitetul comitetul ştiinţific al conferinţei ConsILR 2012, “Resurse
lingvistice şi instrumente pentru prelucrarea limbii române”, Bucureşti, 2012
11. Membră în comitetul comitetul ştiinţific al conferinţei MDIS 2015, “Modelling and
development
of
intelligent
systems”,
Sibiu,
2015
(http://conferences.ulbsibiu.ro/mdis/2015/)
12. Membră în comitetul ştiinţific al conferinţei MACS, Joint Conference on Mathematics
and Computer Science (http://macs.elte.hu/committee/)
13. Membră în comitetul ştiinţific al conferinţei SYNASC, International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing
XVII Coordonări de contracte finanţate din sursă naţională
1. Contribuţii în domeniul Sistemelor MultiAgent folosind psihologie cognitiva, agenţi de
interfaţă şi paradigma programării orientate pe aspecte, Grant
tip TP-T nr
30943/12.07.2007, Grant intern Universitatea Babeş-Bolyai, 2007-2010, 75000 RON
(aprox. 23.900 Euro)
2. Cercetari in directia optimizarii adaptive a sistemelor informatice folosind tehnici de
invatare automata si sisteme multiagent, Proiect PNCDI II – Proiecte de cercetare
exploratorie, Cod CNCSIS ID_2286/2008, 2008-2010, 364460.59 RON
XVIII Participări la contracte finanţate din sursă naţională
1. Modelarea şi implementarea unei baze multidisciplinare de algoritmi pentru crearea unui
centru de calcul de înaltă performanţă, Grant CNCSIS Tip A 275, Contract între
Universitatea Babeş-Bolyai, Cluj-Napoca şi Consiliul Naţional al Cercetării Stiinţifice
Universitare, Ministerul Cercetării şi Tehnologiei, 1998-2000, 81.000.000 ROL (aprox.
9974 USD)
Director: Prof. Univ. Dr. Militon Frenţiu
Membru
2. Noi metode de calcul evolutiv. Aplicaţii în maşini instruibile, optimizare evolutivă,
analiza datelor şi prelucrarea limbajului natural. Grant CNCSIS Tip A, 34971 / 2001,
Contract între Universitatea Babeş-Bolyai, Cluj-Napoca şi Ministerul Educaţiei şi
Cercetării, 2001-2003, 15000 RON (aprox. 10.000 Euro)
Director: Prof. Univ. Dr. Dan Dumitrescu
Membru
3. Sisteme de asistare a deciziilor colaborative în medii universitare- Studiu de caz UBB,
Grant tip TP nr 2/ 2005, Grant intern Universitatea Babeş-Bolyai, Cluj-Napoca, 20052008, 50.000 RON (aprox. 13.000 Euro)
Director: Prof. Univ. Dr. Ioan Niţchi
Membru
4. Metode formale în realizarea unui procesor WSD, Grant tip TP nr 2/2006, Grant intern
Universitatea Babeş-Bolyai Cluj-Napoca, 2007-2010, 118.000 RON (aprox. 37.700 Euro)
Director: Prof. Univ. Dr. Militon Frenţiu
Membru
5. Sistem decizional bazat pe tehnici de tip multi-agent pentru generarea, optimizarea si
managementul registrelor nationale de boli cronice netransmisibile-CRONIS, Nr. 11-
003/2007, Proiect PNCDI II - 4 (Parteneriate in domenii prioritare), 2007-2010,
2.100.000 RON (aprox. 850.000 Euro)
Director: Ioan Stoian - SC IPA SA sucursala Cluj
Membru
6. Sistem de predicţie si avertizare privind efectele încălzirii globale asupra sănătăţii
populatiei I–GLOB, Nr. 42-117/2008, Proiect PNCDI II - 4 (Parteneriate in domenii
prioritare) 2008-2011, 2.000.000 RON (aprox. 465.000 Eur )
Director: Conf. Univ. Dr. Dana Manuela Sârbu
Responsabil ştiințific proiect
7. ȊNVĂȚARE AUTOMATĂ ȊN PROBLEME PRIVIND EVOLUȚIA ȘI ȊNTREȚINEREA
SISTEMELOR INFORMATICE, Proiect PN-II-RU-TE-2014-4-0082 (Tinere echipe de
cercetare),
2015-2017,
549792
RON
(aprox.
122.000
Euro)
http ://www.cs.ubbcluj.ro/~istvanc/amel
Membru
XIX Participări la contracte finanţate din surse internaţionale
1. AETC – Advanced Education Technology Center. Partners: “Petru Maior” Univ. of TârguMureş, National University of Athens, University of Ireland Galway, Technical Univ. of
Cluj-Napoca, “Babeş-Bolyai” University of Cluj-Napoca, TEMPUS S-JEP 12518-97,
Finanţat de Comisia Europeană, 179 400 EUR, 1998-2001
Director: Prof. Dr. Călin Enăchescu
- grant de mobilitate în perioada 06.11.2000-10.12.2000 la National Technical University of
Athens
XX
Granturi de mobilitate finanţate din surse internaţionale
1. June 2003 - CEEPUS Mobility Grant H-81 - Universitatea “Eötvös Loránd” Budapesta, Ungaria.
2. June 2002 – CEEPUS Mobility Grant H-81 - Facultatea de Ştiinţe din Kosice, Slovacia.
3. June 1999 – CEEPUS Mobility Grant H-81 - Universitatea Tehnică din Szeged, Ungaria.
XXI Premii şi distincţii
1. Distincţia “cum laude” la teza de doctorat.
2. Diplomă de merit pentru contribuţia la dezvoltarea Universităţii Babeş-Bolyai, Nr.
20639/11.12.2006, 2006.
3. Premiul “Best Student Paper Award” pentru articolul “A Formal Model For Clustering
Based Aspect Mining”, The 8th WSEAS International Conference on Mathematical
Methods And Computational Techniques In Electrical Engineering (MMACTEE '06),
Bucureşti, 2006.
4. Premiu pentru cărţi publicate în 2006, Universitatea Babeş-Bolyai, Nr. 32497/
19.12.2007.
5. Premii pentru articol ISI, 2008-2014, CNCS.
6. Premiul “Profesorul anului”, Universitatea Babeş-Bolyai, Nr. 21906/07.12.2010, 2010.
7. Gradație de merit – 2008, 2011
8. Premiu pentru excelență științifică, Facultatea de Matematică și Informatică, 2012.
XXII Limbi străine cunoscute
Engleză
Franceză
Maghiară
CITIT
VORBIT
SCRIS
foarte bine
bine
bine
foarte bine
bine
bine
foarte bine
bine
bine
Lista publicaţiilor
Prof. dr. Gabriela (ŞERBAN) CZIBULA
I
Articole de specialitate
Ia
Articole in ISI Web of Knowledge
Articole în publicaţii din ISI Science Citation Index Expanded

IF 2015 cumulat = 31.2107
1. Şerban, G., Tătar, D., Word Sense Disambiguation for Untagged Corpus:
Application to Romanian Language, Proceedings of CICling 2003, Mexico City,
Mexic, in Computational Linguistics and Intelligent Text Processing, Lecture
Notes in Computer Science N 2588, Springer-Verlag Berlin Heidelberg 2003,
Alexander Gelbukh (Ed.), pp.268-272, ISBN 3-540-00843-8
2. Şerban, G., Câmpan, A., Incremental Clustering Using a Core-Based Approach,
Proceedings of The 20th International Symposium on Computer and Information
Science (ISCIS'05), Istanbul, Turkey, 2005, in Computer and Information
Sciences-ISCIS 2005, Lecture Notes in Computer Science N 3733, SpringerVerlag Berlin Heidelberg 2005, pp.854-863, P. Yolum et al. (Eds), ISBN: 3-54029414-7
3. Şerban, G., Câmpan, A., Czibula, I.G., A Programming Interface For Finding
Relational Association Rules, International Journal of Computers,
Communications and Control, Vol. I/2006, Proceedings of the International
Conference on Computers, Communications and Control, ICCCC 2006, Oradea,
2006, pp. 934-944 (IF=0.627)
4. Dărăbant, A.S., Câmpan, A., Şerban, G., Incremental Horizontal Fragmentation:
A new Approach in the Design of Distributed Object Oriented Databases,
International Journal of Computers, Communications and Control, Vol. I/2006,
Proceedings of the International Conference on Computers, Communications and
Control, ICCCC 2006, Oradea, 2006, pp. 170-174 (IF=0.627)
5. Câmpan, A., Şerban, G., Adaptive Clustering Algorithms, the 19th Canadian
Conference on Artificial Intelligence, Canadian AI-2006, Quebec, Canada, 2006,
in Advances in Artificial Intelligence, LNAI 4013, L. Lamontagne and M.
Marchand (Eds.), Springer-Verlag Berlin Heidelberg 2006, pp. 409–420
6. Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius,
Lithuania, Vol. 19, No. 1, 2008, pp. 101-112 (IF=1.386)
7. Czibula, I.G., Şerban, G., Hierarchical clustering based design patterns
Identification, International Journal of Computers, Communications and Control,
Vol. 3, Proceedings of the International Conference on Computers,
Communications and Control, ICCCC 2008, Oradea, 2008, pp. 248-252
(IF=0.627)
8. Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a
Directional Relation, Journal of Research and Practice in Information
Technology, Vol. 41, Nr. 1, 2009, pp. 17-28
9. Czibula, G., Cojocar, G.S, A hierarchical clustering based approach in aspect
mining, Computing and Informatics, Bratislava, Slovakia, Volume 29, No. 6,
2010, pp. 881-900 (IF = 0.524)
10. Czibula, G., Czibula, I.G., Incremental Refactoring Using Seeds, SIC Journal,
Studies in Informatics and Control, Vol. 19, Issue. 3, 2010, pp. 271-284
(IF=0.723)
11. Czibula, G., Cojocar, G.S., Czibula, I.G., Evaluation Measures For Partitioning
Based Aspect Mining Techniques, International Journal of Computers,
Communications and Control, 6(1), 2011, pp. 72-80 (IF=0.627)
12. Bocicor, M. I., Czibula, G., Czibula, I.G., A Distributed Q-Learning Approach to
Fragment Assembly, SIC Journal, Studies in Informatics and Control, Vol. 20,
Issue. 3, 2011, pp. 221-232 (IF=0.723)
13. Czibula, G., Bocicor, M. I., Czibula, I.G., Promoter Sequences Prediction Using
Relational Association Rule Mining, Evolutionary Bioinformatics, Vol. 8, 2012,
pp. 181-196 (IF=1.404)
14. Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Using Software
Metrics for Automatic Software Design Improvement, Studies in Informatics and
Control, ISSN 1220-1766, vol. 21 (3), pp. 249-258, 2012 (IF=0.723)
15. Czibula, G., Crișan C.G., Pintea, M.C, Czibula, I.G., Soft computing approaches
on the bandwidth problem, Informatica, Vilnius, Lithuania, 2013, Vol. 24, No. 1,
pp. 1–12 (IF=1.386)
16. Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures Selection
using Neural Networks, Knowledge and Information Systems, Volume 34, Issue
1, 2013, Page 171-192 (IF=1.702)
17. Czibula, G., Bocicor, M. I., Czibula, I.G., Temporal Ordering of Cancer
Microarray Data through a Reinforcement Learning Based Approach, PloS One
journal, 8(4): e60883, doi:10.1371/journal.pone.0060883, 2013 (IF=3.057)
18. Doina Tatar, Diana Inkpen, Gabriela Czibula, Text segmentation using Rogetbased weighted lexical chains, Computing and Informatics, Vol. 32, 2013, pp.
1001-1018 (IF=0.524)
19. Gabriela Czibula, Istvan Gergely Czibula, Software systems performance
improvement by intelligent data structures customization, Information Sciences,
Vol. 274, 2014, pp. 249-260 (IF=3.364)
20. Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect
Prediction using Relational Association Rule Mining, Information Sciences, Vol.
264, April 2014, pp. 260-278 (IF=3.364)
21. Czibula, G., Czibula, I.G., Găceanu, R.D., A Support Vector Machine Model For
Intelligent Selection of Data Representations, Applied Soft Computing, Volume
18, May 2014, Pages 70–81 (IF=2.857)
22. Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Detecting
Software Design Defects Using Relational Association Rule Mining, Knowledge
and Information Systems, Vol. 42, Number 3, 2015, pp. 545-577 (IF=1.702)
23. Gabriela Czibula, Istvan Gergely Czibula, Adela Sȋrbu, Ioan-Gabriela Mircea, A
novel approach to adaptive relational association rule mining, Applied Soft
Computing journal, Vol. 36, November 2015, pp. 519-533, 2015 (IF=2.857)
24. Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Software packages
refactoring using a hierarchical clustering-based approach, Computing and
Informatics, 2014, under review
25. Gabriela Czibula, Vlad-Sebastian Ionescu, Diana-Lucia Miholca, Ioan-Gabriel
Mircea, Machine learning based approaches for predicting stature of
archaeological skeletal remains from long bone lengths, Journal of
Archaeological Science, vol. 65, pp. 85-99, 2016 (IF=2.255)
26. Czibula, I.G., Czibula, G., Marian, Zs., A Novel Approach Using Fuzzy SelfOrganizing Maps for Detecting Software Faults, Studies in Informatics and
Control, ISSN 1220-1766, vol. 25 (2), pp.207-216, 2016 (IF=0.723)
Articole în publicaţii din ISI Conference Proceedings Citation Index
1. Şerban, G., Tătar, D., An improved algorithm on Word Sense Disambiguation,
Proceedings of IIS 2003 (Intelligent Information Systems - New Trends in
Intelligent Text Processing and Web Mining), Zakopane, Poland, in Advances in
Soft Computing, Springer Verlag, 2003, XIV, pp.199-208, ISBN 3-540-00843-8
2. Şerban, G., A New Programming Interface for Reinforcement Learning
Simulations, in "Intelligent Information Processing and Web Mining"
Proceedings of IIS:IIPWM'05 (Intelligent Information Systems - New Trends in
Intelligent Information Proccessing and Web Mining), Gdansk, Poland, 2005, in
Advances in Soft Computing, Springer Verlag, 2005, XV, pp.481-485, Klopotek,
Mieczyslaw A.; Wierzchon, Slawomir T.; Trojanowski, Krzysztof (Eds.), ISBN:
3-540-25056-5
3. Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical
Incremental Clustering, Proceedings of the 7th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05),
Timisoara, Romania, IEEE Computer Society Press, 2005, pp. 77-82, D. Zaharia
(Ed.), ISBN 07695-2453-2
4. Câmpan, A., Şerban, G., A New Incremental Core-Based Clustering Method,
Proceedings of the Second IFIP Conference on Artificial Intelligence Applications
and Innovations (AIAI'05), Beijing, China, 2005, pp.269-278
5. Şerban, G., Moldovan, G.S, A new k-means based clustering algorithm in Aspect
Mining, Proceedings of the 8th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC'06), Timisoara,
Romania, 2006, pp.69-74
6. Şerban, G., Tarţa, A., Moldovan, G.S, A Learning Interface Agent for User
Behavior Prediction, Proceedings of HCI International 2007, China, LNCS 4552:
HCI Intelligent Multimodal Interaction Environments by J. Jacko, ISBN 978-3540-73108-5, pp. 508-517
7. Czibula, I.G., Şerban, G., A Programming Interface for Determining
Refactorings of Object-Oriented Software Systems using Clustering, ICCP 2007:
Proceedings of the IEEE 3rd International Conference on Intelligent Computer
Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania,
pp. 271-274
8. Cojocar, G.S, Şerban, G., On Evaluating Aspect Mining Techniques, ICCP 2007:
Proceedings of the IEEE 3rd International Conference on Intelligent Computer
Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania,
pp. 217-224
9. Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering,
ISCIS 2007, Proceedings of The 22th International Symposium on Computer and
Information Sciences, November 7-9, Ankara, Turkey, 2007, pp. 262-267
10. Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring
through Clustering, ICAISC'08, The Eighth International Conference on Artificial
Intelligence and Soft Computing, LNAI 5097, pp. 693-704
11. Czibula, I.G., Şerban, G., Identifying Design Patterns in Object-Oriented
Software Systems Using Unsupervised Learning, 2008 IEEE-TTTC International
Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 347352
12. Czibula, G., Guran, A., Cojocar, G.S, Czibula, I.G., Multiagent Decision Support
Systems based on Supervised Learning, 2008 IEEE-TTTC International
Conference on Automation, Quality and Testing, Robotics, AQTR 2008, pp. 353358
13. Cojocar, G.S., Czibula, G., On Clustering Based Aspect Mining, ICCP 2008:
Proceedings of the IEEE 4th International Conference on Intelligent Computer
Communication and Processing, 2008, Cluj-Napoca, Romania, pp. 129-136
14. Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification,
SYNASC 2008, The 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timişoara, 2008, IEEE Society Press, pp.
253-256
15. Tătar, D., Mihiş, A., Czibula G., Lexical Chains Cohesion Segmentation in
Summarization, SYNASC 2008, The 10th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, Timişoara, 2008, IEEE
Society Press, pp. 95-101
16. Czibula, I.G.,
Czibula, G., Refactorings Detection Using Hierarchical
Clustering, European Computing Conference, ECC'08, Malta, 2008, pp.332-337
17. Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent
MultiAgent System for Clinical Decision Support, International Conference on
Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS'
2008, Targu Mures, IEEE Society Press, 2008, pp. 183-188
18. Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for
crosscutting concerns identification, Proceedings of the 8th International
Conference on Software Engineering, parallel and distributed systems
(SEPADS '09), Cambridge, UK, 2009, pp. 111-116
19. Tătar, D., Tămâianu, E., Czibula, G., Segmenting text by lexical chains
distribution, KEPT 2009, Knowledge Engineering: Principles and Techniques,
International Conference, Babes-Bolyai University, Presa Universitară Clujeană,
2009, pp. 69-76
20. Czibula, G., Guran, A., Czibula, I.G., Cojocar, G.S., IPA - An Intelligent
Personal Assistant Agent For Task Performance Support, ICCP 2009:
Proceedings of the IEEE 5th International Conference on Intelligent Computer
Communication and Processing, 2009, Cluj-Napoca, Romania, pp. 31-34
21. Czibula, I.G., Czibula, G., Guran, A., Dynamic customization of data structures
instances using an agent based approach, SYNASC 2009, Proceedings of the 11th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Timişoara, 2009, IEEE Society Press, pp. 341-347
22. Czibula, G., Czibula, I.G., Adaptive Refactoring Using a Core-Based Clustering
Approach, Proceedings of the 9th International Conference on Software
Engineering,
Parallel
and
Distributed
Systems
(SEPADS '10), Cambridge, UK, 2010, pp. 133-138
23. Czibula, I.G., Czibula, G., Hierarchical Clustering for Adaptive Refactorings
Identification, 2010 IEEE-TTTC International Conference on Automation,
Quality and Testing, Robotics, AQTR 2010, pp. 99-104
24. Petraşcu, V., Czibula, G., Sîrbu, D., Popa, M., Curşeu, D., Identifying the impact
of global warming on population using a clustering based approach, 2010 IEEETTTC International Conference on Automation, Quality and Testing, Robotics,
AQTR 2010, pp. 294-299
25. Czibula, G., Bocicor, M.I., Czibula, I.G., A Distributed Reinforcement Learning
Approach for Solving Optimization Problems, in Recent Researches in
Communications and IT, Proceedings of the 5th International Conference on
Communications and Information Technology (CIT '11), Greece, 2011, pp. 25-30
26. Bocicor, M. I., Czibula, G., Czibula, I.G., A Reinforcement Learning Approach
for Solving the Fragment Assembly Problem, Proceedings of the 13th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2011, IEEE Computer Society, pp. 191-198, 2011
27. Alina Andreica, Josef Küng, Gabriela Şerban Czibula and Christian Sacarea,
Designing a General Architecture for Data Interchange, 10th International
Conference on Web Information Systems and Technologies, SCITEPRESS –
Science and Technology Publications, 978-989-758-023-9, pp. 214-219, 2014.
28. Sȋrbu, A., Czibula, G., Bocicor, M.I., Dynamic clustering of gene expression data
using a fuzzy approach, The 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2014, IEEE Computer
Society, pp. 220-227, 2014
29. Ionescu V.S, Mircea I.G., Miholca, D.L, Czibula G., Instance Based Learning
Approaches for predicting the height of human skeletons, ICCP 2015: Proceedings
of the IEEE International Conference on Intelligent Computer Communication
and Processing, 2015, Cluj-Napoca, Romania, pp. 309-316
30. Mircea I.G., Czibula G., Bocicor, M.I., A Q-learning Approach for Aligning
Protein Sequences, ICCP 2015: Proceedings of the IEEE International Conference
on Intelligent Computer Communication and Processing, 2015, Cluj-Napoca,
Romania, pp. 51-58
31. Mircea, I.G., Bocicor, M. I., Czibula, G., A novel reinforcement learning based
approach to multiple sequence alignment, 7th International Workshop on Soft
Computing Applications, 2016, to be published
32. Ionescu, V.S., Czibula, G., Teletin, M., Supervised learning techniques for body
mass estimation in bioarchaeology, 7th International Workshop on Soft
Computing Applications, 2016, to be published
33. Diana-Lucia Miholca, Gabriela Czibula, Ioan-Gabriel Mircea, Istvan Gergely
Czibula, Machine learning based approaches for sex identification in
bioarchaeology, Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC'16), Timisoara, Romania, IEEE Computer Society Press, to be
published
34. Zsuzsanna Marian, Ioan-Gabriel Mircea, Istvan-Gergely Czibula and Gabriela
Czibula, A novel approach for software defect prediction using fuzzy decision
trees, Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'16),
Timisoara, Romania, IEEE Computer Society Press, to be published
35. Czibula, I.G, Miholca, D.L , Czibula, G., Enhancing relational association rules
with gradualness, 9th International Conference on Knowledge Science,
Engineering and Management, KSEM 2016, under review
Ib
Articole publicate în volume ale conferinţelor internaţionale
indexate
1. Şerban, G., Training Hidden Markov Models - a Method for Training Intelligent
Agents, Proceedings of the Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems, Krakow, Polonia, 2001, Barbara Dunin-Keplicz
(Ed.) pp.267-276, ISBN 83-915953-0-7
2. Şerban, G., Real Time Learning in Agent Based Systems, Proceedings of the 4th
International Workshop on Symbolic and Numeric Algorithms for Scientific
Computing , Timisoara, Romania, 2002, pp.337-347, ISBN: 973-585-785-5
3. Orăşan, C., Tătar, D., Şerban, G., Oneţ, A., Avram, D., How to build a QA
System in your back-garden: application to Romanian, Proceedings of EACL
2003, Budapest, Hungary, 2003, pp. 139-142, ISBN 1-932432-01-9
4. Şerban, G., A new logic architecture for Intelligent Agents, Proceedings of AGP
2003 (Appia-Gulp-Prode 2003 - Joint Conference on Declarative Programming),
Reggio Calabria, Italia, 2003, pp.159-168
5. Şerban, G., Development methods for Intelligent Systems, Proceedings of the
Fifth Joint Conference on Mathematics and Computer Science, Debrecen,
Hungary, 2004, pp. 17-18
6. Şerban, G., Tătar, D., UBB System at Senseval-3, Proceedings of Senseval-3: The
Third International Workshop on the Evaluation of Systems for the Semantic
Analysis of Text, ACL 2004, Barcelona , July 2004, pp.226-228
7. Câmpan, A., Dărăbant, A., Şerban, G., Clustering Techniques for Adaptive
Horizontal Fragmentation in Object Oriented Databases, International
Conference on Theory and Applications of Mathematics and Informatics
(ICTAMI05), in Acta Universitatis Apulensis no. 10, 2005, pp.263-274
8. Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical
Incremental Clustering, Proceedings of the 7th International Workshop on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05),
Timisoara, Romania, 2005, pp. 42-47
9. Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space Model Based
Clustering Approach, Proceedings of the 2nd Workshop on Linking Aspect
Technology and Evolution, AOSD'06, The 5th Aspect-Oriented Software
Development, LATE workshop, 2006, pp.36-40
10. Câmpan, A., Şerban, G., Truţă, M., Marcus, A., An Algorithm for the Discovery
of Arbitrary Length Ordinal Association Rules, DMIN'06, The 2006 International
Conference on Data Mining, Las Vegas, USA, Sven F. Crone (Ed.), CSREA
Press, USA, ISBN: 1-60132-004-3, pp. 107-113,
11. Moldovan, G.S, Şerban, G., Quality Measures for Evaluating the Results of
Clustering Based Aspect Mining Techniques, Proceedings of International
workshop TEAM'06, 2006, pp. 13-16
12. Şerban, G., Moldovan, G.S, A New Genetic Clustering Based Approach in Aspect
Mining, The 8th WSEAS International Conference on Mathematical Methods And
Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti,
2006, pp. 135-140
13. Moldovan, G.S, Şerban, G., A Formal Model For Clustering Based Aspect
Mining, The 8th WSEAS International Conference on Mathematical Methods And
Computational Techniques In Electrical Engineering (MMACTEE '06), Bucureşti,
2006, pp. 70-75
14. Tătar, D., Şerban, G., Mihiş, A., Mihalcea, R., Textual Entailment as a
Directional Relation, Computer-aided language processing, CALP 2007,
Borovets, Bulgaria, 30 September 2007, pp. 53-58
15. Şerban, G., Moldovan, G.S, A New Graph-Based Approach in Aspect Mining,
KEPT 2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai
University, June 6-8, 2007, Cluj-Napoca, pp. 252-260
16. Czibula, I.G., Şerban, G., A Hierarchical Clustering Algorithm for Software
Design Improvement, KEPT 2007, Knowledge Engineering: Principles and
Techniques, International Conference, Babes-Bolyai University, June 6-8, 2007,
Cluj-Napoca, in Studia Informatica, pp. 316-323
17. Tătar, D., Şerban, G., Lupea, M., Text Entailment Verification with Text
Similarities, KEPT 2007, Knowledge Engineering: Principles and Techniques,
Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 33-40
18. Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain
algorithm for Word Sense Disambiguation, KEPT 2007, Knowledge Engineering:
Principles and Techniques, Babes-Bolyai University, June 6-8, 2007, ClujNapoca, pp. 41-49
19. Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect Mining
Techniques, Proceedings of the 3rd Workshop on Linking Aspect Technology and
Evolution, Vancouver, Canada, LATE'07, 2007, pp. 40-44
20. Şerban, G., Czibula, I.G., A New Clustering Approach for Systems Designs
Improvement, 2007 International Conference on Software Engineering Theory and
Practice, SETP-07, Orlando, USA, July 9-12, 2007, pp. 47-54
21. Czibula, I.G., Şerban, G., Software Systems Design Improvement Using
Hierarchical Clustering, SERP'07- The 2007 International Conference on
Software Engineering Research and Practice, June 25-28, Las Vegas, USA, 2007,
pp. 229-235
22. Şerban, G., Czibula, I.G., Câmpan, A., Medical Diagnosis Prediction using
Relational Association Rules, International Conference on Theory and
Applications of Mathematics and Informatics (ICTAMI'07), Alba-Iulia, 2008, pp.
339-352
23. Tătar, D., Mihiş, A., Serban G., Top-down Cohesion Segmentation in
Summarization, STEP 2008, Symposium on Semantics in Systems for Text
Processing, Venice, Italy, 2008, pp. 145-151
Ic
Articole publicate în reviste internaţionale indexate
1. Şerban, G., Tătar, D., Well-typedness verification in logic programming with
types, Studia Universitatis “Babeş-Bolyai”, Informatica, XLIII, Number 2, 1998,
pp.13-23
2. Şerban, G., An improvement of the Roy-Floyd algorithm, Studia Universitatis
“Babeş-Bolyai”, Informatica, XLIV(1), 1999, pp.94-99
3. Duda, A., Şerban, G., Tătar, D., Training probabilistic context-free grammars as
hidden Markov models, Studia Universitatis “Babeş-Bolyai”, Informatica,
XLV(1), 2000, pp.17-30
4. Şerban, G., A Method for Training Intelligent Agents Using Hidden Markov
Models, Studia Universitatis “Babeş-Bolyai”, Informatica, XLV(2), 2000, pp.4150
5. Şerban, G., Tătar, D., Term Rewriting Systems in Logic Programming and in
Functional Programming, Studia Universitatis “Babeş-Bolyai”, Informatica,
XLV(2), 2000, pp.77-84
6. Şerban, G., A Reinforcement Learning Intelligent Agent, Studia Universitatis
“Babeş-Bolyai”, Informatica, XLVI(2), 2001, pp.9-18
7. Tătar, D., Şerban, G., A New Algorithm for Word Sense Disambiguation, Studia
Universitatis “Babeş-Bolyai”, Informatica, XLVI(2), 2001, pp.99-108
8. Şerban, G., A New Real-Time Learning Algorithm, Studia Universitatis “BabeşBolyai”, Informatica, XLVII(1), 2002, pp.3-14
9. Şerban, G., LASG – A Logic Architecture for Intelligent Agents, Studia
Universitatis “Babeş-Bolyai”, Informatica, XLVII(2), 2002, pp.13-22
10. Şerban, G., Tătar, D., A Word Sense Disambiguation Experiment for Romanian
Language, Studia Universitatis “Babeş-Bolyai”, Informatica, XLVII(2), 2002,
pp.37-42
11. Şerban, G., A New Reinforcement Learning Algorithm, Studia Universitatis
“Babeş-Bolyai”, Informatica, XLVIII(1), 2003, pp.3-14
12. Tătar, D., Şerban, G., Words Clustering in Question Answering Systems, Studia
Universitatis “Babeş-Bolyai”, Informatica, XLVIII(1), 2003, pp.23-32
13. Şerban, G., A New Interface for Reinforcement Learning Software, Studia
Universitatis "Babes-Bolyai", Informatica, XLVIII(2), 2003, pp.3-10
14. Lupşa, D., Şerban, G., Tătar, D., Hierarchical clustering algorithms for repeating
similarity values, Studia Universitatis "Babes-Bolyai", Informatica, XLVIII(2),
2003, pp.61-72
15. Şerban, G., Pintea, M.C., Heuristics and learning approaches for solving the
Traveling Salesman Problem, Studia Universitatis "Babes-Bolyai", Informatica,
XLIX(2), 2004, pp.27-36
16. Şerban, G., A Programming Interface for Non-Hierachical Clustering, Studia
Universitatis "Babes-Bolyai", Informatica, L(1), 2005, pp.69-78
17. Şerban, G., Câmpan, A., Core Based Incremental Clustering, Studia Universitatis
"Babes-Bolyai", Informatica, L(1), 2005, pp. 89-96
18. Şerban, G., Câmpan, A., Adaptive Clustering Using a Core-Based Approach,
Studia Universitatis "Babes-Bolyai", Informatica, L(2), 2005, pp.33-40
19. Şerban, G., Czibula, I.G., Câmpan, A., A Programming Interface For Medical
Diagnosis Prediction, Studia Universitatis "Babes-Bolyai", Informatica, LI(1),
2006, pp. 21-30
20. Câmpan, A., Şerban, G., Marcus, A., Relational Association Rules and Error
Detection, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 3136
21. Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques in Aspect
Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp.69-78
22. Şerban, G., Moldovan, G.S, A Graph Algorithm for Identification of Crosscutting
Concerns, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.3-10
23. Lupea, M., Şerban, G., A graph-based approach for computing constrained and
rational default extensions, Analele Universităţii Timişoara, Seria Matematică şi
Informatică, fasc.1/2006, vol.XLIV, pp.73-86
24. Moldovan, G.S, Şerban, G., A Study on Distance Metrics for Partitioning Based
Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006,
pp.53-60
25. Czibula, I.G., Şerban, G., Improving Systems Design Using a Clustering
Approach, IJCSNS International Journal of Computer Science and Network
Security, VOL.6 No.12, December 2006, pp. 40-49
26. Czibula, I.G., Şerban, G., An Analysis of Distance Metrics for Clustering based
Improvement of Systems Design, Studia Universitatis "Babes-Bolyai",
Informatica, LII(1), 2007, pp. 45-54
27. Şerban, G., Czibula, I.G., On Evaluating Software Systems Design, Studia
Universitatis "Babes-Bolyai", Informatica, LII(1), 2007, pp. 55-66
28. Czibula, I.G., Şerban, G., A Study on clustering based restructuring of Software
Systems, Studia Universitatis "Babes-Bolyai", Informatica, LII(2), 2007, pp. 93100
29. Tarţa, A., Moldovan, G.S, Şerban, G., An Agent Based User Interface
Evaluation Using Aspect Oriented Programming Techniques, ICAM5, Baia-Mare,
Creative Math.&Inf, 16, 2007, pp.151-158
30. Şerban, G., Lupea, M., Computing Constrained Default Extensions - a Constraint
Satisfaction Problem, ICAM5, Baia-Mare, Creative Math.&Inf, 16, 2007, pp.99107
31. Şerban, G., Moldovan, G.S, Aspect Mining Using An Evolutionary Approach,
WSEAS Transactions on Computers, Issue 2, Vol.6, February 2007, pp. 298-305
32. Moldovan, G.S, Şerban, G., Clustering Based Aspect Mining Formalized,
WSEAS Transactions on Computers, Issue 2, Vol.6, February 2007, pp. 199-206
33. Moldovan, G.S, Şerban, G., A Formal Model for Partitioning Based Aspect
Mining, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 3 September 2007, pp. 19-26
34. Czibula, I.G., Şerban, G., Hierachical Clustering for Software Systems
Restructuring, INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n.
4, December 2007, pp. 43-51
35. Cojocar, G.S, Guran, A., Sanislav, T., Czibula, G., A multiagent based approach
for national cancer registry management, ICAM6, International Conference on
Applied Mathematics, Creative Math. &Inf., 3/2008, pp. 369-374
36. Czibula, I.G., Czibula (Serban), G., Hierarchical Clustering based Automatic
Refactorings Detection, WSEAS Transactions on Electronics, Issue 7, Vol.5, July
2008, pp. 291-302
37. Şerban, G., Czibula, I.G., A Search Based Approach for Identifying Design
Patterns, Studia Universitatis "Babes-Bolyai", Informatica, LIII(1), 2008, pp. 3-16
38. Czibula, I.G., Czibula, G., A partitional clustering algorithm for improving the
structure of object-oriented software systems, Studia Universitatis "BabesBolyai", Informatica, LIII(2), 2008, pp. 105-114
39. Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring using
Clustering, Analele Universitatiii de Vest Timisoara, Seria Matematică şi
Informatică , Vol. XLVI, No. 2, 2008, pp. 161-173
40. Cojocar, G.S., Czibula, G., Czibula. I.G., A Comparative Analysis of Clustering
Algorithms in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica,
LIV(1), 2009, pp. 75-84
41. Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Decision support system for
software maintenance and evolution, KEPT 2009, Knowledge Engineering:
Principles and Techniques, International Conference, Babes-Bolyai University, in
Studia Informatica, 2009, pp. 181-184
42. Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns
Using Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume
8, 2009, pp. 386-395
43. Czibula. I.G., Czibula, G., Cojocar, G.S., Hierarchical Clustering for Identifying
Crosscutting Concerns in Object Oriented Software Systems, , INFOCOMP
Journal of Computer Science, Volume 8, Number 3, Brazilia, 2009, pp. 21-28.
44. Czibula, G., Czibula, I.G., Clustering Based Adaptive Refactoring, Wseas
Transactions on Information Science and Applications, Issue 3, Volume 7, 2010,
pp. 391-400
45. Czibula, G., Crisan, G.C., Pintea, C.M., Czibula, I.G., Soft computing approaches
on the Bandwith Problem, Abstracts of International Conference on Applied
Mathematics (ICAM7), 2010
46. Czibula, I.G., Czibula, G., On converting software systems to object oriented
architectures, BRAIN Journal, Special Issue on Complexity in Sciences and
Artifical Intelligence, Vol. 1, 2010, pp. 12-17
47. Czibula, I.G., Czibula, G., Unsupervised transformation of procedural programs
to object-oriented design, Acta Universitatis Apulensis, Special Issue on
Understanding Complex Systems, 2012, pp. 15-27
48. Czibula, I.G., Czibula, G., Adaptive restructuring of object-oriented software
systems, Studia Universitatis "Babes-Bolyai", Informatica, LV(2), 2010, pp. 1-12
49. Czibula, G., Czibula, I.G., Pintea M.C, A Reinforcement Learning Approach for
Solving the Matrix Bandwidth Minimization Problem, Studia Universitatis
"Babes-Bolyai", Informatica, LV(4), 2010, pp. 9-17
50. Czibula G., Bocicor, M.I., Czibula, I.G., A Reinforcement Learning Model for
Solving the Folding Problem, IJCTA - International Journal of Computer
Technology and Applications, Vol. 2, Issue 1, 2011, pp. 171-182
51. Czibula, G., Bocicor, M.I., Czibula, I.G., An Experiment on Protein Structure
Prediction using Reinforcement Learning, Studia Babes-Bolyai Informatica, LVI
(1), 2011, pp. 25-34
52. Czibula, I. G., Czibula, G., Bocicor, M.I., A Software Framework for Solving
Combinatorial Optimization Tasks, Studia Universitatis "Babes-Bolyai",
Informatica, Proc. of KEPT 2011, Special Issue, LVI(3), pp. 3-8, 2011
53. Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem
Using a Distributed Q-Learning Approach, International Journal of Computers,
Volume 5, Issue 3, 2011, pp. 404-413
54. Czibula, G., Czibula, I.G., Unsupervised Restructuring of Object-Oriented
Software Systems using Self-Organizing Feature Maps, International Journal of
Innovative Computing Information and Control, Japan, Volume 8, No. 3(A),
2012, pp. 1689-1704
55. Czibula, G., Czibula, I.G., Bocicor, M.I., A Comparison of Reinforcement
Learning Based Models for the DNA Fragment Assembly Problem, Studia
Universitatis "Babes-Bolyai", Informatica, Proc. of KEPT 2013, LVIII(2), pp. 90102, 2013
56. Bocicor, M.I., Sȋrbu A., Czibula, G., Dynamic core based clustering of gene
expression data, International Journal of Innovative Computing Information and
Control, Japan, Volume 10, No. 3, 2014, pp. 1051-1069
57. Marian Zs., Czibula G., Czibula I.G., FAOS – A framework for analysing object
oriented software systems, Studia Universitatis "Babes-Bolyai", Informatica,
LIX(2), pp.66-81, 2014
58. Zsuzsanna Marian, Istvan Gergely Czibula, Gabriela Czibula and Sergiu Sotoc,
Software Defect Detection using Self-Organizing Maps, Studia Universitatis
"Babes-Bolyai”, LX(2), 2015, pp. 55-69
59. Ioan-Gabriel Mircea, Gabriela Czibula and Mara-Renata Petrusel, Sex
identification in archaeological remains using decision tree learning, Studia
Universitatis "Babes-Bolyai”, LX(2), 2015, pp. 91-103
Id
Articole publicate în volume ale conferinţelor internaţionale
neindexate
1. Şerban, G., Training intelligent agents as hidden Markov models, Proceedings of
Abstracts of the Fourth Joint Conference on Mathematics and Computer Science,
Felix, Romania, 2001, pp.91
2. Şerban, G., Web Programming Tutorials, Advanced Educational Technologies,
Proceedings AET Workshop, Târgu Mureş, 2001, Editura Universităţii “PetruMaior” Târgu Mureş, pp.128-149, ISBN: 973-8084-60-1
3. Serban, G., Tutorials, Advanced Educational Technologies, Proceedings AET
Workshop, Târgu Mures, 2001, Editura Universitatii "Petru-Maior" Târgu Mures,
pp.158-281, ISBN: 973-8084-60-1
4. Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Assisting Software
Maintenance and Evolution Using an Agent Based Approach, Post-proceedings of
KEPT 2009, pp. 197-204
5. Czibula, I. G., Czibula, G., Bocicor, M.I., A Reinforcement Learning Based
Framework for Solving Optimization Problems, Post proceedings of KEPT 2011,
Presa Universitară Clujeană, 2011, pp. 235-246
6. Dumitrescu, D., Sas, L., Şerban, G., Câmpan, A., Dărăbant, A., Pop, H.F.,
Ţâmbulea, L., Cooperative Learning for Distributed Data Mining, in
“Collaborative Support Systems in Business and Education” - International
Workshop, Babes-Bolyai University, Faculty of Economics and Business
Administration, Romania, Editura Risoprint, Cluj-Napoca, 2005, pp. 432-440
7. Şerban, G., Cojocar, G.S, A New Hierarchical Agglomerative Clustering
Algorithm in Aspect Mining, BCI'07, Proceedings of the 3rd Balkan Conference in
Informatics, 27-29 September 2007, Sofia, Bulgaria, pp. 143-152
8. Czibula, I.G., Şerban, G., A new Clustering Algorithm for Refactorings
Determination, BCI'07, Proceedings of the 3rd Balkan Conference in Informatics,
27-29 September 2007, Sofia, Bulgaria, pp. 131-142
Ie
Articole publicate în volume ale conferinţelor naţionale neindexate
1. Şerban, G., Software package for educational units, “Babeş-Bolyai” University
of Cluj-Napoca, Faculty of Mathematics and Computer Science, Research
Seminars, Seminar on Computer Science, 1998, pp.175-178
2. Şerban, G., Searching graphs in logical programming, “Babeş-Bolyai”
University of Cluj-Napoca, Faculty of Mathematics and Computer Science,
Research Seminars, Seminar on Computer Science, 1999, pp.67-72
3. Şerban, G., Intelligent agents and reinforcement learning, “Babeş-Bolyai”
University of Cluj-Napoca, Faculty of Mathematics and Computer Science,
Research Seminars, Seminar on Computer Science, 2000, pp.13-20
4. Şerban, G., A Simple Web Agent for displaying a tree structure, “Babeş-Bolyai”
University of Cluj-Napoca, Faculty of Mathematics and Computer Science,
Research Seminars, Seminar on Computer Science, 2001, pp.41-48
5. Şerban, G., Formal Methods in Agent Based Systems, Proceedings of the
Symposium "Zilele Academice Clujene", Cluj Napoca, 2002, pp.59-68
6. Lupşa, D., Şerban, G., Tătar, D., From noun clusters to taxonomies on untagged
corpora, Proceedings of the Symposium “Colocviul Academic Clujean de
Informatica”, 2003, pp.182-191
7. Câmpan, A., Şerban, G., Dărăbant, A., Incremental Horizontal Fragmentation in
Object Oriented Databases Using Clustering Techniques, Proceedings of the
Symposium “Colocviul Academic Clujean de Informatica”, 2005, pp.63-68
8. Moldovan, G.S, Şerban, G., CAMIT - A Tool for Comparing Clustering Based
Aspect Mining Techniques, Proceedings of the Symposium “Colocviul Academic
Clujean de Informatica”, Directii noi de cercetare in Informatica, 2006, pp.9-14
9. Cojocar G.S., Czibula, G. FRAM - A Framework for Evaluating the Results of
Aspect Mining Techniques, Proceedings of the Symposium “Colocviul Academic
Clujean de Informatica”, Directii noi de cercetare in Informatica, 2008, pp. 13-20
II
Manuale
1. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare
Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică,
Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 2-a, 2000
2. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare
Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică,
Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 3-a, 2001
3. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare
Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică,
Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 4-a, 2002
4. Pop, H.F., Şerban, G., Inteligenţa Artificială, Note de curs, Centrul de Formare
Continuă şi Învăţământ la Distanţă, Facultatea de Matematică şi Informatică,
Universitatea “Babeş-Bolyai”, Cluj-Napoca, ediţia a 5-a, 2003
III
Cărţi publicate în edituri naţionale
1. Pop, H.F., Şerban, G., Programare în Inteligenţa Artificială: limbajele LISP şi
PROLOG, Ed. Albastră, Cluj-Napoca, 2003, (186 pagini), ISBN 973-650-104-3
2. Şerban, G., Pop, H.F., Tehnici de Inteligenţă Artificială. Abordări bazate pe
Agenţi Inteligenţi, Ed. Mediamira, Cluj-Napoca, 2004, (137 pagini), ISBN 973-003717-5
3. Şerban, G., Pop, H.F., Elemente avansate de programare în Lisp şi Prolog.
Aplicaţii în Inteligenţa Artificială., Ed. Albastră, Cluj-Napoca, 2006, (270 pagini),
ISBN 973-650-172-8
4. Şerban, G., Sisteme Multiagent în Inteligenţa Artificială Distribuită. Arhitecturi
şi Aplicaţii, Ed. RisoPrint, Cluj-Napoca, 2006, (300 pagini), ISBN 973-751-194-8
(ISBN 978-973-751-194-2)
5. Frenţiu, M., Pop, H.F., Şerban, G., Programming Fundamentals, Ed. Presa
Universitara Clujeana, Cluj-Napoca, 2006, (232 pagini - în limba engleză), ISBN
973-610-494-X (978-973-610-494-7)
6. Czibula, G., Sisteme inteligente. Instruire automata, Ed. RisoPrint, Cluj-Napoca,
2008, (218 pagini), ISBN 978-973-751-898-6
7. Niculescu V., Czibula, G., Structuri fundamentale de date si algoritmi. O
perspectiva orientata obiect., Ed. Casa Cărții de știință, 2011 (230 pagini), ISBN
978-973-133-931-3
8. Czibula, G., Pop, H.F., Elemente avansate de programare în Lisp şi Prolog.
Aplicaţii în Inteligenţa Artificială., Ed. Albastră, Cluj-Napoca, 2012
IV
Alte publicaţii
1. Şerban, G., Despre viruşii calculatoarelor, Revista Şcolii Naţionale de Gaz
Mediaş no.1, 1992
2. Şerban, G., Probleme de concurs, Revista Şcolii Naţionale de Gaz Mediaş no.1,
1992
3. Şerban, G., Grafică în Turbo Pascal, Revista Şcolii Naţionale de Gaz Mediaş
no.2, 1992
4. Şerban, G., Programare orientată obiect, Gazeta de Informatică a Şcolii
Naţionale de Gaz Mediaş, 1997
5. Şerban, G., Introducere în Java, Gazeta de Informatică a Şcolii Naţionale de Gaz
Mediaş, 1997
V


Citări
Total citări: peste 227
Număr total de citări din ISI Web of Knowledge: 97
Hirsch index (ISI Web Of Knowledge) fără auto-citări: 4
Title
Czibula, I.G., Czibula, G., Clustering based automatic refactorings
identification, SYNASC 2008, The 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing,
Timişoara, 2008, IEEE Society Press, pp. 253-256 (ISI Proceedings)
Şerban, G., Câmpan A., Hierarchical Adaptive Clustering,
Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112
(ISI)
Czibula, I.G., Serban, G., Hierarchical clustering based design
No. of citations in
ISI Web of
Knowledge
4
8
3
patterns Identification, International Journal of Computers,
Communications and Control, Vol. 3, Proceedings of the International
Conference on Computers, Communications and Control, ICCCC
2008, Oradea, 2008, pp. 248-252 (ISI)
Şerban, G., Czibula, I.G., Object-Oriented Software Systems
Restructuring through Clustering, ICAISC'08, The Eighth
International Conference on Artificial Intelligence and Soft
Computing, LNAI 5097, pp. 693-704
Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures
Selection using Neural Networks, Knowledge and Information
Systems, 34(1) pp. 171–192
Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent
MultiAgent System for Clinical Decision Support, International Conference on
Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS' 2008,
Targu Mures, IEEE Society Press, 2008, pp. 183-188 (ISI Proceedings)
Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect
Prediction using Relational Association Rule Mining, Information Sciences, Vol.
264, April 2014, pp. 260-278
3
5
7
8
Hirsch index (Google Scholar) fără auto-citări: 9
Title
Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space
Model Based Clustering Approach, AOSD'06, The 5th AspectOriented Software Development, LATE workshop, 2006, pp. 36-40
Czibula, I.G., Şerban, G., Improving Systems Design Using a
Clustering Approach, IJCSNS Int. Journal of Computer Science and
Network Security, VOL.6 No.12, December 2006, pp. 40-49
Şerban, G., Moldovan, G.S, A new k-means based clustering
algorithm in Aspect Mining, Proceedings of the 8th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC'06), Timisoara, Romania, 2006, pp.60-64
Şerban, G., Czibula, I.G., Object-Oriented Software Systems
Restructuring through Clustering, ICAISC'08, The Eighth
International Conference on Artificial Intelligence and Soft
Computing, LNAI 5097, pp. 693-704
Czibula, I.G., Şerban, G., Hierachical Clustering for Software
Systems Restructuring, INFOCOMP Journal of Computer Science,
Brazilia, Volume 6 - n. 4, December 2007, pp. 43-51
Czibula, I.G., Czibula, G., Clustering based automatic refactorings
identification, SYNASC 2008, The 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing,
Timişoara, 2008, IEEE Society Press, pp. 253-256
Şerban, G., Câmpan A., Hierarchical Adaptive Clustering,
Informatica, Vilnius, Lithuania, Vol. 19, No. 1, 2008, pp. 101-112
Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques
in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica,
LI(1), 2006, pp.69-78
Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a
Directional Relation, Journal of Research and Practice in Information
No. of citations
19
15
12
10
10
8
14
8
6
Technology, Vol. 41, Nr. 1, 2009, pp. 17-28
Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect
Mining Techniques, Proceedings of the 3rd Workshop on Linking
Aspect Technology and Evolution, Vancouver, Canada, LATE'07,
2007, pp. 40-44
Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent
MultiAgent System for Clinical Decision Support, International Conference on
Complexity and Intelligence of the Artificial and Natural Complex Systems Medical Applications of the Compex Systems Biomedical Computing CANS' 2008,
Targu Mures, IEEE Society Press, 2008, pp. 183-188 (ISI Proceedings)
Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect
Prediction using Relational Association Rule Mining, Information Sciences, Vol.
264, April 2014, pp. 260-278
Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for
crosscutting concerns identification, Proceedings of the 8th International Conference
on Software Engineering, parallel and distributed systems (SEPADS'09), Cambridge,
UK, 2009, pp. 111-116
Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem
Using a Distributed Q-Learning Approach, International Journal of Computers,
Volume 5, Issue 3, 2011, pp. 404-413
6
11
19
9
9
Şerban, G., Czibula, I.G., Object-Oriented Software Systems Restructuring through
Clustering, ICAISC'08, The Eighth International Conference on Artificial Intelligence and
Soft Computing, LNAI 5097, pp. 693-704 (ISI Proceedings)
cited in
1. Cassell, K., Andreae, P., Groves, L., Noble, J., Towards Automating Class-Splitting
Using Betweenness Clustering, ASE '09: Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, IEEE Computer
Society, 2009, pp. 595-599 (citation at pp. 596) (ISI Proceedings)
2. Keith Cassell Craig Anslow Lindsay Groves Peter Andreae, Visualizing the
Refactoring of Classes via Clustering, 34th Australasian Computer Science
Conference (ACSC 2011), Perth, Australia, January 2011, pp. 1-10 (citation at pp.
2,3,9) (ISI Proceedings)
3. Cassell, K., Anslow, C., Groves, L., Andreae, P., Vizualizing Class Refactoring via
Clustering, Victoria University of Wellington, Technical Report ECSTR10-17, 2010
(citation at pp. 9)
4. Cassell, K., Groves, L., Andreae, P., Noble, J., An Initial Test Suite for Automated
Extract Class Refactorings, Victoria University of Wellington, Technical Report
ECSTR10-21, 2010 (citation at pp. 11)
5. Pan, Weifeng , Li, Bing,Ma, Yutao, Liu, Jing, Qin, Yeyi, Class structure refactoring
of object-oriented softwares using community detection in dependency networks,
Frontiers of Computer Science in China, Higher Education Press, co-published with
Springer-Verlag GmbH, vol. 3, issue 3, pp. 396-404, 2009
6. Jinghong Chen, Refactoring with CARE: Fine-Grained Analysis of Refactoring
Effects, PhD Thesis, National Cheng Kung Univeristy, China, 2009 (citation at pp. 23,
66, 67, 68…)
7. Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master Thesis,
Univ. of Amsterdam, 2010
8. Niels Streekmann, Clustering-Based Support for Software Architecture Restructuring,
Springer, 2011 (citation at pp. 39)
9. Aftab Hussain and Md. Saidur Rahman. 2013. A new hierarchical clustering
technique for restructuring software at the function level. In Proceedings of the 6th
India Software Engineering Conference (ISEC '13). ACM, New York, NY, USA, 4554.
10. Hewijin Jiau, Lee Wei Mar, Jinghong Chen, "OBEY: Optimal Batched Refactoring
Plan Execution for Class Responsibility Redistribution," IEEE Transactions on
Software Engineering, vol. 99, no. PrePrints, p. 1, , 2013 (ISI) – citation at pp. 22
Czibula, I.G., Czibula, G., Clustering based automatic refactorings identification, SYNASC
2008, The 10th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Timişoara, 2008, IEEE Society Press, pp. 253-256 (ISI Proceedings)
cited in
1. Kecia A.M. Ferreira, Mariza A.S. Bigonha, Roberto S. Bigonha, Luiz F.O. Mendes,
Heitor C. Almeida, Identifying thresholds for object-oriented software metrics,
Journal of Systems and Software, Available online 7 June 2011 (ISI)
2. Marouane Kessentini, Stephane Vaucher, and Houari Sahraoui. 2010. Deviance from
perfection is a better criterion than closeness to evil when identifying risky code. In
Proceedings of the IEEE/ACM international conference on Automated software
engineering (ASE '10). ACM, New York, NY, USA, pp. 113-122 (ISI Proceedings)
(citation at pp. 118)
3. Kecia A. M. Ferreira, Mariza A. S. Bigonha, Roberto S. Bigonha, Heitor C. Almeida,
Roberta Coeli das Neves, Metrica de Coesao de Responsabilidade - A Utilidade de
Metrica de Coesao na Identificacao de Classes com Problemas Estruturais, SBQS
2011, X SIMPÓSIO BRASILEIRO DE QUALIDADE DE SOFTWARE, 2011
(citation at pp. 10)
4. Heliomar Kann da Rocha Santos, RUMO AO REJUVENESCIMENTO
AUTOMÁTICO DE SOFTWARE GUIADO POR ATRIBUTOS DE QUALIDADE,
Dissertação apresentada ao Programa de PósGraduação em Computação da
Universidade Federal Fluminense, 2011 (citation at pp. 35)
5. Kessentini, W.; Kessentini, M.; Sahraoui, H.; Bechikh, S.; Ouni, A., "A Cooperative
Parallel Search-Based Software Engineering Approach for Code-Smells Detection,"
Software Engineering, IEEE Transactions on , vol.40, no.9, pp.841,861, Sept. 1 2014,
doi: 10.1109/TSE.2014.2331057 (ISI)
Şerban, G., Câmpan A., Hierarchical Adaptive Clustering, Informatica, Vilnius, Lithuania,
Vol. 19, No. 1, 2008, pp. 101-112 (ISI)
cited in
1. MS Levin, O Kruchkov, O Hadar, E Kaminsky, Combinatorial Systems Evolution:
Example of Standard for Multimedia Information, INFORMATICA, 2009, Vol. 20,
No. 4, 519–538 (citation at pp. 521) (ISI)
2. Mirjam SEPESY MAUCEC, Janez BREST, Reduction of Morpho-Syntactic Features
in Statistical Machine Translation of Highly Inflective Language, INFORMATICA,
2010, Vol. 21, No. 1, 95–116 (citation at pp. 97) (ISI)
3. Hong Yu, Shuangshuang Chu, and Dachun Yang. Autonomous knowledge-oriented
clustering using decision-theoretic rough set theory. In Proceedings of the 5th
international conference on Rough set and knowledge technology (RSKT'10), Jian
Yu, Salvatore Greco, Pawan Lingras, Guoyin Wang, and Andrzej Skowron (Eds.).
Springer-Verlag, Berlin, Heidelberg, LNAI 6401, 2010, pp. 687-694. DOI:
10.1007/978-3-642-16248-0_93 (ISI Proceedings)
4. Hong Yu; Shuangshuang Chu; Dachun Yang; , A semiautonomous clustering
algorithm based on decision-theoretic rough set theory, Cognitive Informatics
(ICCI), 2010 9th IEEE International Conference on , vol., no., pp.477-483, 7-9 July
2010, doi: 10.1109/COGINF.2010.5599691 (ISI Proceedings) (citation at pp. 477)
5. Hong Yu, Zhanguo Liu and Guoyin Wang, Automatically Determining the Number of
Clusters Using Decision-Theoretic Rough Set, ROUGH SETS AND KNOWLEDGE
TECHNOLOGY, Lecture Notes in Computer Science, 2011, Volume
6954/2011, 504-513 (ISI Proceedings)
6. Gorla, Narasimhaiah, Ng, Vincent, Law, Dik, Improving database performance with
a mixed fragmentation design, Journal of Intelligent Information Systems, Springer
Netherlands, ISSN: 0925-9902, pp. 1-18, 2012 (ISI)
7. DX Wang, JL Xu, HC Yuan, Hierarchical clustering algorithm of the Minimum Risk,
Applied Mechanics and Materials, Volumes 333 – 335, pp. 1410-1413, 2013
8. Hong Yu, Zhanguo Liu, Guoyin Wang, An automatic method to determine the
number of clusters using decision-theoretic rough set, International Journal of
Approximate Reasoning, Elsevier, Volume 55, Issue 1, Part 2, January 2014, Pages
101–115 (ISI)
9. Sirbu, A., Bocicor I, A dynamic approach for hierarchical clustering of gene
expression data, IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), 2013, pp. 3-6
10. Sheeba, J.I.; Vivekanandan, K., "Low frequency keyword extraction with sentiment
classification and cyberbully detection using fuzzy logic technique," Computational
Intelligence and Computing Research (ICCIC), 2013 IEEE International Conference
on , vol., no., pp.1,5, 26-28 Dec. 2013
11. J.L. Casteleiro-Roca, J.L. Calvo-Rolle, M.C. Meizoso-Lopez, A. Piñón-Pazos, B.A.
Rodríguez-Gómez, Bio-inspired model of ground temperature behavior on the
horizontal geothermal exchanger of an installation based on a heat pump,
Neurocomputing, Volume 150, Part A, 20 February 2015, Pages 90–98 (ISI)
12. Lukač, Niko, Žalik, Borut, Žalik, Krista Rizman, Sweep-Hyperplane Clustering
Algorithm Using Dynamic Model, Informatica, vol. 25, no. 4, pp. 563-580, 2015
13. Sklyarov, V.; Skliarova, I.; Silva, J.; Sudnitson, A.; Rjabov, A., "Hardware
accelerators for information retrieval and data mining," in Information and
Communication Technology Research (ICTRC), 2015 International Conference on ,
vol., no., pp.202-205, 17-19 May 2015
14. A.M. Rajee, F. Sagayaraj Francis, Building Inter Cluster Movement Estimation
(ICME) Model-A Step by Step Approach, Procedia Computer Science, Volume 46,
2015,
Pages
210-215,
ISSN
1877-0509,
http://dx.doi.org/10.1016/j.procs.2015.02.013.
Tatar, D., Serban, G., Mihis, A., Mihalcea R., Textual Entailment as a Directional Relation,
Journal
of
Research
and
Practice
in
Information
Technology, Vol. 41, Nr. 1, 2009, pp. 17-28 (ISI)
cited in
1. Lan Huang, David Milne, Eibe Frank, and Ian H. Witten. Learning a concept-based
document similarity measure. Journal of the American Society for Information
Science and Technology, 2012 (citation at pp. 11) (ISI)
2. Miguel Angel Ríos Gaona, Alexander Gelbukh and Sivaji Bandyopadhyay,
Recognizing Textual Entailment with Statistical Methods, Advances in Pattern
Recognition, LNCS 6256, 2010, Springer, pp. 372-381 (ISI Proceedings)
3. Miguel Angel Ríos Gaona, Alexander Gelbukh and Sivaji Bandyopadhyay,
Recognizing Textual Entailment Using a Machine Learning Approach, Advances in
Pattern Recognition, LNCS 6438, 2010, Springer, pp. 177-185 (ISI Proceedings)
4. Perini, A. 2011. Detecting Textual Entailment with Conditions on Directional Text
Relatedness Scores, Proceedings of the Second Text Analysis Conference (TAC
2009) November 16-17, 2009 National Institute of Standards and Technology
Gaithersburg, Maryland, USA, pp. 1-4 (citation at pp. 1)
5. Moruz, M. A, Predication Driven Textual Entailment, Teza de doctorat, pp. 1-181,
Universitatea Al. Ioan Cuza, Iasi, 2011 (citation at pp. 27)
6. Perini, A. 2012. DirRelCond3: Detecting Textual Entailment Across Languages With
Conditions On Directional Text Relatedness Scores, First Joint Conference on Lexical
and Computational Semantics (*SEM), pages 710–714, Montreal, Canada, June 7-8,
2012.
Czibula, G., Czibula, I.G., Cojocar, G.S, Guran, A., IMASC - An Intelligent MultiAgent
System for Clinical Decision Support, International Conference on Complexity and
Intelligence of the Artificial and Natural Complex Systems - Medical Applications of the
Compex Systems Biomedical Computing CANS' 2008, Targu Mures, IEEE Society Press,
2008, pp. 183-188 (ISI Proceedings)
cited in
1. Rizwan Muhammad Saleem, Aslam Muhammad, A.M. Martinez-Enriquez, Remote
Patient Monitoring and Healthcare Management Using Multi-agent Based
Architecture, Mexican International Conference on Artificial Intelligence, pp. 118123, Ninth Mexican International Conference on Artificial Intelligence, 2010 (ISI
Proceedings) (citation at pp. 2)
2. Iantovics, B., Cognitive Medical Multiagent Systems, BRAIN. Broad Research in
Artificial Intelligence and Neuroscience, Volume 1, Issue 1 , January 2010 , ISSN
2067-3957pp. 12-21 (citation at pp. 14)
3. Madhavi Pradhan and G.R. Bamnote, Predictive Modeling of clinical data using soft
computing -Diabetes a Case Study, Int. J. of Computer and Communications Vol. 1,
No. 1, March 2011, pp. 31-37 (citation at pp. 34)
4. Acharya, S.; Dutta, A., "Coordination ontology for multi agent based distributed
decision making," 2012 2nd IEEE International Conference on Parallel Distributed
and Grid Computing (PDGC), , vol., no., pp.508,514, 6-8 Dec. 2012 (ISI
Proceedings)
5. Bouzguenda, Lotfi, Turki, Manel, Designing an Architectural Style for Dynamic
Medical Cross-Organizational Workflow Management System: An Approach Based
on
Agents
and
Web
Services,
Journal
of
Medical
Systems,
http://dx.doi.org/10.1007/s10916-014-0032-2, Springer US, March 2014 (ISI)
6. Flávio Luiz Seixas, Bianca Zadrozny, Jerson Laks, Aura Conci, Débora Christina
Muchaluat Saade, A Bayesian network decision model for supporting the diagnosis
of dementia, Alzheimer‫׳‬s disease and mild cognitive impairment, Computers in
Biology and Medicine, Volume 51, 1 August 2014, Pages 140-158 (ISI)
7. Khan, A., Chen, H., Huszka, C. 2011. Semantic Policy-based Access Control
Framework for Patient Medical Information, ACM Transactions on Embedded
Computing Systems, Vol. 9, No.4, Article 39, 2011 (ISI)
8. Flávio Luiz Seixas, Bianca Zadrozny, Jerson Laks, Aura Conci, Débora Christina
Muchaluat-Saade: A Bayesian network decision model for supporting the diagnosis of
dementia, Alzheimer's disease and mild cognitive impairment. Comp. in Bio. and
Med. 51: 140-158 (2014) (ISI)
9. Lotfi Bouzguenda, Manel Turki, Designing an Architectural Style for Dynamic
Medical Cross-Organizational Workflow Management System: An Approach Based
on Agents and Web Services, Journal of Medical Systems 04/2014; 38(4):32 (ISI)
10. Dutta, Animesh and Acharya, Sudipta and Krishna, Aneesh and Bhattacharya,
Swapan. 2013. Virtual Medical Board: A distributed Bayesian agent based approach,
in The 25th International Conference on Software Engineering and Knowledge
Engineering (SEKE), Jun 27-29 2013, pp. 685-689. Boston, USA: Knowledge
Systems Institute. (ISI)
Cojocar, G.S, Şerban, G., On Evaluating Aspect Mining Techniques, ICCP 2007:
Proceedings of the IEEE 3rd International Conference on Intelligent Computer
Communication and Processing, September, 6-8, 2007, Cluj-Napoca, Romania, pp. 217-224
(ISI Proceedings)
cited in
1. Sayyed Garba Maisikeli, Aspect Mining Using Self-Organizing Maps With Method
Level Dynamic Software Metrics as Input Vectors, PhD Thesis, Nova Southeastern
University, 2009 (citation at pp.2)
2.
Hong Yuan Liu, Wang, Jiang, Maximal tree method in Aspect Mining, Journal of
Chongquing University, No. 10, 2009, pp. 1221-1225
3.
Min Box Xu Baowen, Program dependence graph based on the Aspect Mining,
Journal of SouthEast University. Natural Science, No. 2, 2008, pp. 239-243
Czibula, I.G., Serban, G., Hierarchical clustering based design patterns Identification,
International Journal of Computers, Communications and Control, Vol. 3, Proceedings of the
International Conference on Computers, Communications and Control, ICCCC 2008, Oradea,
2008, pp. 248-252 (ISI)
cited in
1. D. Antonelli, P. Chiabert, Introducing Collaborative Practices in Small Medium
Enterprises, Int. J. of Computers, Communications & Control, Vol. V (2010), No. 1,
pp. 8-19 (citation at pp. 16) (ISI)
2. Anshu Parashar and Jitender Kumar Chhabra, Clustering Dynamic Class Coupling
Data to Measure Class Reusability Pattern, HIGH PERFORMANCE
ARCHITECTURE AND GRID COMPUTING Communications in Computer and
Information Science, Springer, 2011, Volume 169, Part 1, 126-130 (ISI Proceedings)
3. Dario Antonelli, Caterina Petrigni, Investigation into the actual application of the
diagnostic and therapeutic guidelines for colon cancer, Italian Journal of Public
Health, Vol. 8, No.4, 2011, pp. 310-317 (citation at pp. 313)
4. Jitender Kumar Chhabra and Anshu Parashar, Clustering Dynamic Class Coupling
Data Using K-Mean And Cosine Similarity Measure To Predict Class Reusability
Pattern, 5th IEEE International Conference On Advanced Computing &
Communication Technologies [ICACCT-2011] ISBN 81-87885-03-3, Pp. 280-285
(Pp. 281)
5. ANTONIO ADÁN, MIGUEL ADÁN, CONSENSUS STRATEGY FOR
CLUSTERING USING RC-IMAGES, PATTERN RECOGNITION, VOLUME 47,
ISSUE 1, JANUARY 2014, PAGES 402–417. (ISI)
6. Shouzheng Yang; Manzer, A.; Tzerpos, V., "Measuring the quality of design pattern
detection results," Software Analysis, Evolution and Reengineering (SANER), 2015
IEEE 22nd International Conference on , vol., no., pp.53,62, 2-6 March 2015
7. HANEEN DABAIN, AYESHA MANZER, AND VASSILIOS TZERPOS. 2015.
DESIGN PATTERN DETECTION USING FINDER. IN PROCEEDINGS OF THE
30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC '15).
ACM, NEW YORK, NY, USA, 1586-1593.
Czibula, G., Guran, A., Czibula, I.G., Cojocar, G.S., IPA - An Intelligent Personal Assistant
Agent For Task Performance Support, ICCP 2009: Proceedings of the IEEE 5th International
Conference on Intelligent Computer Communication and Processing, 2009, Cluj-Napoca,
Romania, pp. 31-34 (ISI Proceedings)
cited in
1. Piedad, Francisco J. Martinez, and Christian Guetl, Adding Semantic Web Knowledge
to Intelligent Personal Assistant Agents, University of Zaragoza, Spain, pp. 1-12,
(citation at pp. 3)
2. Chein-Shung Hwang and Ruei-Siang Fong, A Hybrid Recommender System based on
Collaborative Filtering and Cloud Model, World Academy of Science, Engineering
and Technology 75, 2011, pp. 500-505 (citation at pp. 500)
3. J Santos, JJPC Rodrigues, BMC Silva, J Casal, An IoT-based Mobile Gateway for
Intelligent Personal Assistants on Mobile Health Environments, Journal of Network
and Computer applications, 2016, published online (ISI)
Şerban, G., Tătar, D., Word Sense Disambiguation for Untagged Corpus: Application to
Romanian Language, Proceedings of CICling 2003, Mexico City, Mexic, in Computational
Linguistics and Intelligent Text Processing, Lecture Notes in Computer Science N 2588,
Springer-Verlag Berlin Heidelberg 2003, Alexander Gelbukh (Ed.), pp.270-275, ISBN 3-54000843-8 (ISI)
cited in
1. Frunză, O., Inkpen, D., Nadeau, D., A Text Processing Tool for the Romanian
Language, Workshop Eurolan 2005, Cluj-Napoca, Romania, (citation at pp. 7)
2. Auger, A., Roy, J., Expression of uncertainty in linguistic data, 11th International
Conference on Information Fusion, Canada, 2008, pp. 1860-1867 (citation at pp.
1864)
Şerban, G., Moldovan, G.S, A new k-means based clustering algorithm in Aspect Mining,
Proceedings of the 8th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC'06), Timisoara, Romania, 2006, pp.60-64
cited in
1. Mario Luca Bernardi, Giuseppe Antonio Di Lucca, A role-based crosscutting
concerns mining approach to evolve Java systems towards AOP, Proceedings of the
Joint International and Annual ERCIM Workshops on Principles of Software
Evolution (IWPSE) and Software Evolution (Evol) workshops, pp. 63-72, 2009
2.
Ryan R. Rosario, An Automated Approach to Categorizing Wikipedia. Articles
using a Self- Organizing Map and CART, University of California, Research Report,
pp. 1-8
3.
R., B. Nagarajan, S. Karthick, An Illustration of Mining Access Pattern (MAP)
For Commercial Websites, Procedia Engineering, Volume 30, 2012, Pages 348–355
4.
William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of
vector space models for use in aspect mining. In Proceedings of the 50th Annual
Southeast Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220225.
5.
McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18
March 2012 (ISI Proceedings)
6.
Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering,
Journal of Software Engineering and Applications, 2012, 5, Published Online July
2012 (http://www.SciRP.org/journal/jsea) (citation at pp. 1)
7.
Huang, Jin, Carminati, Federico, Betev, Latchezar, Zhu, Jianlin, Lu, Yansheng,
Identifying composite crosscutting concerns with scatter-based graph clustering,
Wuhan University Journal of Natural Sciences, 2012-04-01, Wuhan University,
co-published with Springer, pp. 114-120, Vol.17, Issue: 2
8.
Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
9.
Lin Wang, Tomoyuki Aotani, and Masato Suzuki. 2013. Feature selection for
clustering based aspect mining. In Proceedings of the 4th international workshop
on Variability & composition(VariComp '13). ACM, New York, NY, USA, 7-12.
10. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using
Clustering Analysis. Doctoral dissertation. Nova Southeastern University.
Retrieved from NSUWorks, Graduate School of Computer and Information
Sciences. (50)
11. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete
Junior, Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting
Concerns: A Systematic Literature Review, Information Technolog: New
Generations, Volume 448 of the series Advances in Intelligent Systems and
Computing pp 569-579, 29 March 2016 (ISI Proceedings)
12. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Cojocar, G.S., Czibula, G., On Clustering Based Aspect Mining, ICCP 2008: Proceedings of
the IEEE 4th International Conference on Intelligent Computer Communication and
Processing, 2008, Cluj-Napoca, Romania, pp. 129-136 (ISI Proceedings)
cited in
1. Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Identifying Crosscutting
Concerns Using Historical Code Changes, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, ICSE 2010, (Cape Town, South
Africa), pp. 305-314 (citation at pp. 13) (ISI Proceedings)
2. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
3. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior,
Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns:
A Systematic Literature Review, Information Technolog: New Generations, Volume
448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29
March 2016 (ISI Proceedings)
4. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Czibula, G., Guran, A., Cojocar, G.S, Czibula, I.G., Multiagent Decision Support Systems
based on Supervised Learning, 2008 IEEE-TTTC International Conference on Automation,
Quality and Testing, Robotics, AQTR 2008, pp. 353-358 (ISI Proceedings)
cited in
1. Ronneesley M. Teles, Marcos Ivamoto, Leonardo H. S. Mello, Valdemar V. Graciano
Neto, Cedric Luiz de Carvalho, Um Sistema de Apoio à Decisão baseado em Agentes
para a Companhia Elétrica do Estado de Goiás, Workshop WESAAC 2010,
Universitatea din Rio-Grande, pp. 32-40 (citation at pp. 34, 37)
Tătar, D., Tămâianu, E., Czibula, G., Segmenting text by lexical chains distribution, KEPT
2009, Knowledge Engineering: Principles and Techniques, International Conference, BabesBolyai University, in Studia Informatica, 2009, pp. 33-36 (ISI Proceedings)
cited in
1. M Scaiano, D Inkpen, R Laganière et al, Automatic Text Segmentation for Movie
Subtitles, Advances in Artificial Intelligence, Springer Verlag , 2010
Petraşcu, V., Czibula, G., Sîrbu, D., Popa, M., Curşeu, D., Identifying the impact of global
warming on population using a clustering based approach, 2010 IEEE-TTTC International
Conference on Automation, Quality and Testing, Robotics, AQTR 2010, pp. 294-299 (ISI
Proceedings)
cited in
1. LI, C.; SHIMAMOTO, S., An Open Traffic Light Control Model for Reducing
Vehicles CO2 Emissions Based on ETC Vehicles, IEEE Transactions on Vehicular
Technology, Vol. 61, Issue 1, pp. 97-119, 2012 (ISI)
Czibula, G., Czibula, I.G., Găceanu, R.D., Intelligent Data Structures Selection using Neural
Networks, Knowledge and Information Systems, 34(1) pp. 171–192 (ISI)
cited in
1. Sung-Kwun Oh, Ho-Sung Park, Wook-Dong Kim, Witold Pedrycz, A new approach
to radial basis function-based polynomial neural networks: analysis and design,
Knowledge and Information Systems, September 2012, pp. 1-31 doi=
10.1007/s10115-012-0551-4 (ISI)
2. Ninawe, Swapnil S.; Venkataram, Pallapa, "A Method of designing an Access
Mechanism for Social Networks," Communications (NCC), 2013 National
Conference
on ,
vol.,
no.,
pp.1,5,
15-17
Feb.
2013
doi: 10.1109/NCC.2013.6488048 (ISI Proceedings)
3. Lin Wang, Bo Yang, Yuehui Chen, Zhenxiang Chen, Hongwei Sun, Accelerating
FCM neural network classifier using graphics processing units with CUDA, Applied
Intelligence, January 2014, Volume 40, Issue 1, pp 143-153 (ISI)
4. Lin Wang; Bo Yang; Abraham, A., "Prediction of Concrete Strength Using Floating
Centroids Method," Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on , vol., no., pp.988,992, 13-16 Oct. 2013
5. Guoqiang Li, Peifeng Niu, Combustion optimization of a coal-fired boiler with
double linear fast learning network, Soft Computing, October 2014, DOI
10.1007/s00500-014-1486-3 (ISI)
6. Pritpal Singh, A brief review of modeling approaches based on fuzzy time series,
International Journal of Machine Learning and Cybernetics, P 1-24, 2015
7. Pritpal Singh, Fuzzy Time Series Modeling Approaches: A Review, Applications of
Soft Computing in Time Series Forecasting Volume 330 of the series Studies in
Fuzziness and Soft Computing pp 11-39, November 2015
8. P. Singh, Rainfall and financial forecasting using fuzzy time series and neural
networks based model, International Journal of Machine Learning and Cybernetics,
pp 1-16, online 31 May 2016
9. L. Wang; B. Yang; Y. Chen; X. Zhang; J. Orchard, "Improving Neural-Network
Classifiers Using Nearest Neighbor Partitioning," in IEEE Transactions on Neural
Networks
and
Learning
Systems ,
vol.PP,
no.99,
pp.1-13
doi: 10.1109/TNNLS.2016.2580570 (ISI)
Şerban, G., Tarţa, A., Moldovan, G.S, A Learning Interface Agent for User Behavior
Prediction, Proceedings of HCI International 2007, China, LNCS 4552: HCI Intelligent
Multimodal Interaction Environments by J. Jacko, ISBN 978-3-540-73108-5, pp. 508-517
(ISI Proceedings)
cited in
1. Yongjun Kim, Sung-Bae Cho, A Recommendation Agent for Mobile Phone Users
Using Bayesian Behavior Prediction, 2009 Third International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies, pp. 283-288 (citation at
pp. 284) (ISI Proceedings)
2. Schafer, J., Drozd, M., Detecting network attacks using behavioural models, IEEE
6th International Conference on Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS), 2011, Volume: 2, pp. 753 - 758 (ISI Proceedings)
Şerban, G., Câmpan, A., Incremental Clustering Using a Core-Based Approach,
Proceedings of The 20th International Symposium on Computer and Information Science
(ISCIS'05), Istanbul, Turkey, 2005, in Computer and Information Sciences-ISCIS 2005,
Lecture Notes in Computer Science N 3733, Springer-Verlag Berlin Heidelberg 2005,
pp.854-863, P. Yolum et al. (Eds), ISBN: 3-540-29414-7 (ISI)
cited in
1. Sarra Ben Hariz and Zied Elouedi, DK-BKM: Decremental K Belief K-Modes
Method, SUM’10, Lecture Notes in Computer Science, 2010, Volume 6379/2010, pp.
84-97 (ISI Proceedings)
2. Sarra Ben Hariz, Zied Elouedi, IK-BKM: An incremental clustering approach based
on intra-cluster distance, Computer Systems and Applications, ACS/IEEE
International Conference on, pp. 1-8, ACS/IEEE International Conference on
Computer Systems and Applications - AICCSA 2010, 2010 (ISI Proceedings)
3. Ben Hariz, Sarra, Elouedi, Zied, Ranking-Based Feature Selection Method for
Dynamic Belief Clustering, Adaptive and Intelligent Systems, Lecture Notes in
Computer Science, 2011, pp. 308-319, Volume 6943 (ISI Proceedings)
4. Joan Albert Lopez-Vallverdu, Knowledge-Based Incremental Induction of Clinical
Algorithms, PhD Thesis, Universitat Rovira i Virgili, Tarragona, 2012 (citation at pp.
32)
5. Sirbu, A., Bocicor I, A dynamic approach for hierarchical clustering of gene
expression data, IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), 2013, pp. 3-6
6. Sowjanya, A. M.; Shashi, M., NEW PROXIMITY ESTIMATE FOR
INCREMENTAL UPDATE OF NON-UNIFORMLY DISTRIBUTED CLUSTERS,
International Journal of Data Mining & Knowledge Management Process . Sep2013,
Vol. 3 Issue 5, p91-109. 19p.
7. Sarra Ben Hariz, Zied Elouedi, New dynamic clustering approaches within belief
function framework, Intelligent Data Analysis, Volume 18, Number 3/2014, Pages
409-428
Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering, ISCIS 2007,
Proceedings of The 22th International Symposium on Computer and Information Sciences,
November 7-9, Ankara, Turkey, 2007, pp. 262-267 (ISI Proceedings)
cited in
1. Mehmet Kaya, A New Cohesion Metric and Restructuring Technique for Object
Oriented Paradigm, Technical Report, SYR-EECS-2011-11, November 2011,
Syracuse University - Department of EECS, pp. 1-9 (citation at pp. 4)
2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A
Systematic Literature Review, Information and Software Technology, 58(2015), pp.
231-249(ISI)
3. Amarjeet Prajapati , Jitender Kumar Chhabra, Human Interface and the Management
of Information:Information, Design and Interaction, An Efficient Scheme for
Candidate Solutions of Search-Based Multi-objective Software Remodularization,
Volume 9734 of the series Lecture Notes in Computer Science pp 296-307, 2016 (ISI
Proceedings)
Moldovan, G.S, Şerban, G., Aspect Mining using a Vector-Space Model Based Clustering
Approach, AOSD'06, The 5th Aspect-Oriented Software Development, LATE workshop,
2006, pp. 36-40
cited in
1. Paria Parsamanesh, Amir Abdollahi Foumani & Constantinos Constantinides, Mining
anomalies in object-oriented implementations through execution traces, Proceedings
of ICSOFT 2006, pp. 177-189 (citation at pp. 178) (ISI Proceedings)
2. Jin Huang, Yansheng Lu, Jing Yang, Aspect Mining Using Link Analysis, Frontier of
Computer Science and Technology, Japan-China Joint Workshop on, pp. 312-317,
2010 Fifth International Conference on Frontier of Computer Science and
Technology, 2010 (ISI Proceedings)
3. Jijun Cao, Jing Xie, Feng Chen, DSD-D: A Distributed Algorithm for Constructing
High-Stability Application-Layer Multicast Tree, Frontier of Computer Science and
Technology, Japan-China Joint Workshop on, pp. 122-128, 2010 Fifth International
Conference on Frontier of Computer Science and Technology, 2010 (ISI
Proceedings)
4. Rocco Oliveto, Traceability Management meets Information Retrieval Methods
“Strengths and Limitations”, PhD Thesis, 2008, University of Salerno (citation at pp. 46)
5. Esteban Sait Abait, Aspect Mining Mediante Análisis Dinámico y Reglas de
Asociación, PhD Thesis, Universitatea Buenos Aires, 2008 (citation at pp. 44, 74)
6. Sayyed Garba Maisikeli, Aspect Mining Using Self-Organizing Maps With Method
Level Dynamic Software Metrics as Input Vectors, PhD Thesis, Nova Southeastern
University, 2009 (citation at pp.17, 21, 23, 47, 52, 53, 60, 64, 65, 71, 78, 83, 85)
7. Pradeep Rai, Shubha Singh, A Survey of Clustering Techniques, International Journal
of Computer Applications (0975 – 8887), Volume 7– No.12, October 2010, pp. 1-5
8. Omnia Ossama, Hoda M. O. Mokhtar, Mohamed E. El-Sharkawi, Clustering Moving
Objects Using Segments Slopes, International Journal of Database Management
Systems ( IJDMS ), Vol.3, No.1, February 2011, pp. 36-48 (citation at pp. 39)
9. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
10. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
11. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of
Software Engineering and Applications, 2012, 5, Published Online July 2012
(http://www.SciRP.org/journal/jsea) (citation at pp. 1,2)
12. Omnia Ossama, Hoda M. O. Mokhtar, Mohamed E. El-Sharkawi, Segment k-means
Clustering Algorithm, ICCTA 2010, 23-25 October 2010, Alexandria, Egypt, pp. 3642 (citation at pp. 38)
13. Sonia Haiduc, Supporting Text Retrieval Query Formulation In Software
Engineering, Wayne State University, PhD Thesis, 2013
14. Lin Wang, Tomoyuki Aotani, and Masato Suzuki. 2013. Feature selection for
clustering based aspect mining. In Proceedings of the 4th international workshop on
Variability & composition (VariComp '13). ACM, New York, NY, USA, 7-12.
15. Zhu, Jianlin, Huang, Jin, Zhou, Daicui, Carminati, Federico, Zhang, Guoping, He,
Qiang, Identifying composite crosscutting concerns through semi-supervised
learning, Software: Practice and Experience, http://dx.doi.org/10.1002/spe.2234,
2013 (ISI)
16. McFadden, R.R.; Mitropoulos, F.J., "Survey of aspect mining case study software
and benchmarks," Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,5, 4-7
April 2013 (ISI Proceedings)
17. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering
Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (50)
18. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Czibula, I.G., Şerban, G., Improving Systems Design Using a Clustering Approach, IJCSNS
International Journal of Computer Science and Network Security, VOL.6 No.12, December
2006, pp. 40-49
cited in
1. Jehad Al Dallal, The impact of accounting for special methods in the measurement of
object-oriented class cohesion on refactoring and fault prediction activities, Journal
of Systems and Software, Volume 85, Issue 5, May 2012, Pages 1042–1057, ISSN
0164-1212, 10.1016/j.jss.2011.12.006 (ISI)
2. Jehad Al Dallal, Constructing models for predicting extract subclass refactoring
opportunities using object-oriented quality metrics, Information and Software
Technology, Volume 54, Issue 10, October 2012, Pages 1125-1141, ISSN 09505849,
10.1016/j.infsof.2012.04.004.
(http://www.sciencedirect.com/science/
article/pii/S0950584912000754) (ISI)
3. Martin Faunes, Marouane Kessentini, and Houari Sahraoui. 2011. Software
clustering by example. In Proceedings of the 13th annual conference companion on
Genetic and evolutionary computation (GECCO '11), Natalio Krasnogor (Ed.).
ACM, New York, NY, USA, 245-246. DOI=10.1145/2001858.2001996
http://doi.acm.org/10.1145/2001858.2001996 (ISI Proceedings)
4. Marija Katic, Software redesign methods, pp. 1-7 (citation at pp. 5)
5. AMAL ABD EL-RAOUF, Hierarchical Clustering of Distributed Object-Oriented
Software Systems: A Generic Solution for Software-Hardware Mismatch, Wseas
Transactions on Computers, Issue 11, Volume 8, November 2009, pp. 1780-1789
(citation at pp. 1788)
6. Marija Katic, K Fertalj, Challenges And Discussion Of Software Redesign, ICIT
2009, The 4th International Conference on Information Technology , Iordan, 2009,
pp. 1-7 (citation at pp. 4)
7. Martin Faunes, Marouane Kessentini, and Houari Sahraoui. 2011. Deriving highlevel abstractions from legacy software using example-driven clustering.
In Proceedings of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research (CASCON '11). IBM Corp., Riverton, NJ, USA, 188-199.
8. Pan, Weifeng, Li, Bing, Ma, Yutao, Liu, Jing, Qin, Yeyi, Class structure refactoring of
object-oriented softwares using community detection in dependency networks,
Frontiers of Computer Science in China, 2009-09-01, Vol. 3, Issue 3, Higher
Education Press, co-published with Springer-Verlag GmbH, pp. 396- 404 (ISI)
9. Bharti Chhabra , Ashish Oberoi , Sunil Kumar , SIMILARITY AND DISSIMILARITY
MEASURE FOR CLASS CLUSTERING, IJREAS Volume 2, Issue 2 (February 2012),
pp. 175-181 (citation at pp. 177)
10. Jehad Al Dallal and Lionel C. Briand. 2012, A Precise Method-Method InteractionBased Cohesion Metric for Object-Oriented Classes, ACM Trans. Softw. Eng.
Methodol. 21, 2, Article 8 (March 2012), 34 pages. DOI=10.1145/2089116.2089118
http://doi.acm.org/10.1145/2089116.2089118 (ISI)
11. Aftab Hussain and Md. Saidur Rahman. 2013. A new hierarchical clustering
technique for restructuring software at the function level. In Proceedings of the 6th
India Software Engineering Conference (ISEC '13). ACM, New York, NY, USA, 4554.
12. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A
Systematic Literature Review, Information and Software Technology, 58(2015), pp.
231-249 (ISI)
13. Faunes Carvallo, Martin, Improving automation in model-driven engineering using
examples, PhD Thesis, Univeristy of Montreal, 2013
14. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering
Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (50)
Czibula, I.G., Şerban, G., Hierachical Clustering for Software Systems Restructuring,
INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 4, December 2007, pp.
43-51
cited in
1.
Marija Katic, K Fertalj, Towards an Appropriate Software Refactoring Tool
Support, Proceedings of the 9th WSEAS International Conference on APPLIED
COMPUTER SCIENCE, 2009, pp. 140-145
(citation at pp. 2,3) (ISI
Proceedings)
2.
3.
Marija Katic, Software redesign methods, pp. 1-7 (citation at pp. 5)
Marija Katic, K Fertalj, Challenges And Discussion Of Software Redesign, ICIT
2009, The 4th International Conference on Information Technology , Iordan, 2009,
pp. 1-7 (citation at pp. 4)
4. Jai Bhagwan, Ashish Oberoi, Software Modules Clustering: An Effective Approach
for Reusability, Journal of Information Engineering and Applications, Vol. 1, No.
4, 2011, pp. 18-27 (citation at pp. 3)
5.
Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master
Thesis, Univ. of Amsterdam, 2010
6. Syed M. Ali Shah, Jens Dietrich, Catherine McCartin, "Making Smart Moves to
Untangle Programs," csmr, pp.359-364, 2012 16th European Conference on
Software Maintenance and Reengineering, 2012 (ISI Proceedings)
7. Hewijin Jiau, Lee Wei Mar, Jinghong Chen, "OBEY: Optimal Batched Refactoring
Plan Execution for Class Responsibility Redistribution," IEEE Transactions on
Software Engineering, vol. 99, no. PrePrints, p. 1, , 2013 (ISI) – citation at pp. 22
8. SOFTWARE ARCHITECTURE RECOVERY THROUGH SIMILARITY-BASED
GRAPH CLUSTERING JIANLIN ZHU, JIN HUANG, DAICUI ZHOU
ZHONGBAO YIN, GUOPING ZHANG, and QIANG HE, International Journal of
Software Engineering and Knowledge Engineering 2013 23:04, 559-586 (ISI)
9. Kanchan Chaudhary, Dr. Anuj Sharma, Implementation of Two Steps Clustering
Using Telecommunication System, IJTKMI journal, Volume 7 • Number 2 • Jan–
June 2014 pp. 42-48 (ISSN 0973-4414)
10. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering
Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (50)
Cojocar, G.S, Şerban, G., On Some Criteria for Comparing Aspect Mining Techniques,
Proceedings of the 3rd Workshop on Linking Aspect Technology and Evolution, Vancouver,
Canada, LATE'07, 2007, pp. 40-44
cited in
1. Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, Sushil K. Bajracharya, A Theory
of Aspects as Latent Topics, OOPSLA’08, October 19–23, 2008, Nashville,
Tennessee, USA, pp. 543-562 (citation at pp. 559) (ISI Proceedings)
2. Fernando Sérgio Barbosa, Comparing Three Aspect Mining Techniques, DSIE'08 —
Doctoral Symposium on Informatics Engineering 2008, University of Porto, pp. 1-12
(citation at pp. 11)
3. SAMEER SUNDRESH, REQUEST-BASED MEDIATED EXECUTION, PhD
Thesis, University of Illinois at Urbana-Champaign, 2009 (citation at pp. 106)
4. Alexender Dreiling, Aktueller Stand und zukünftige Herausforderungen im Aspect
Mining, Proceedings 2nd Student Conference on Software Engineering and Database
Systems, 2009, pp. 41-48 (citation at pp. 46)
5. Sunday O. Olatunji, Syed U. Idrees, , Yasser S. Al-Ghamdi, Jarallah Saleh Ali AlGhamdi, Mining Software Repositories – A Comparative Analysis, IJCSNS
International Journal of Computer Science and Network Security, VOL.10 No.8,
August 2010 (citation at pp. 164, 165)
6. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior,
Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns:
A Systematic Literature Review, Information Technolog: New Generations, Volume
448 of the series Advances in Intelligent Systems and Computing pp 569-579, 29
March 2016 (ISI Proceedings)
Şerban, G., Moldovan, G.S, A Comparison of Clustering Techniques in Aspect Mining,
Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp.69-78
cited in
1. Lai, Hien, Visani, Muriel, Boucher, Alain, Ogier, Jean-Marc, An experimental
comparison of clustering methods for content-based indexing of large image
databases, Pattern Analysis & Applications, Springer London, pp. 1-22, 2012 (ISI)
2. Christos E. Christodoulopoulos and Kyparissia A. Papanikolaou, A Group Formation
Tool in a E-Learning Context, 19th IEEE International Conference on Tools with
Artificial Intelligence, 2007, pp. 117-123 (citation at pp. 118) (ISI Proceedings)
3. Esteban Sait Abait, Aspect Mining Mediante Análisis Dinámico y Reglas de
Asociación, PhD Thesis, Universitatea Buenos Aires, 2008 (citation at pp. 44, 74)
4. Christos E. Christodoulopoulos and Kyparissia A. Papanikolaou, Investigation of
Group Formation using Low Complexity Algorithms, 11th International Conference
on User Modeling, Corfu, Greece, 2007, pp. 57-60 (citation at pp. 58) (ISI
Proceedings)
5. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
6. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
7. Li-Jen Kao; Yo-Ping Huang, "A robust fuzzy clustering method with outliers
influence free," Fuzzy Theory and it's Applications (iFUZZY), 2012 International
Conference on , vol., no., pp.342,347, 16-18 Nov. 2012
8. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Şerban, G., A New Reinforcement Learning Algorithm, Studia Universitatis “Babeş-Bolyai”,
Informatica, XLVIII(1), 2003, pp.3-14
cited in
1. E Shakshuki, AW Matin, RL-Agent that Learns in Collaborative Virtual
Environment, Third International Conference on Information Technology: New
Generations (ITNG'06), IEEEComputer Society, pp. 90-95 (citari la pp. 90, 91, 92)
(ISI Proceedings)
2. Maysoon Abdulkhair, A Multilingual Automated Web Usability Evaluation Agent,
Ph.D. Thesis, The University of Sheffield, February 2004 (citation at pp.63)
3. E Shakshuki, AW Matin, Intelligent learning agent for collaborative virtual
workspace, International Journal of Pervasive Computing and Communications, Vol.
6 Iss: 2, 2010, pp.131 – 162
Şerban, G., Pintea, M.-C., Heuristics and learning approaches for solving the Traveling
Salesman Problem, Studia Universitatis Babes-Bolyai Informatica, vol. XLIX (2), 2004, pp.
27-36
cited in
1. An Te NGUYEN, COCoFil2 : Un nouveau système de filtrage collaboratif basé sur
le modèle des espaces de communautés, Ph.D. Thesis, Universitatea JOSEPH
FOURIER – GRENOBLE I, 2006 (citation at pp. 143)
2. Vescan (Fanea), A., Construction Approaches for Component{Based Systems, Ph.D.
Thesis, Babes-Bolyai University, Cluj-Napoca, 2008 (citation at pp.27)
Şerban, G., Real Time Learning in Agent Based Systems, Proceedings of the 4th International
Workshop on Symbolic and Numeric Algorithms for Scientific Computing , Timisoara,
Romania, 2002, pp.337-347, ISBN: 973-585-785-5
cited in
1. N. Sahli, B. Moulin, EKEMAS, an Agent-Based Geosimulation Approach to Support
Continual Planning in the Real-Word, Applied Intelligence, Springer, 2009, Volume
31, Number 2, pp. 188-209 (ISI)
2.
N. Sahli, LA GÉOSIMULATION ORIENTÉE AGENT : UN SUPPORT POUR LA
PLANIFICATION DANS LE MONDE RÉEL, These, DÉPARTEMENT
D’INFORMATIQUE ACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ
LAVAL QUÉBEC, 2006 (citation at pp. 157)
Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns Using
Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume 8, 2009, pp. 386395
cited in
1. Kittisak Kerdprasop and Nittaya Kerdprasop, Parallelization of K-means clustering
on multi-core processors. In Proceedings of the 10th WSEAS international
conference on Applied computer science (ACS'10), Hamido Fujita and Jun Sasaki
(Eds.). World Scientific and Engineering Academy and Society (WSEAS), Stevens
Point, Wisconsin, USA, 2010, 472-477 (ISI Proceedings) (citation at pp. 1)
2. Kittisak Kerdprasop and Nittaya Kerdprasop, A lightweight method to parallel kmeans clustering, INTERNATIONAL JOURNAL OF MATHEMATICS AND
COMPUTERS IN SIMULATION, Issue 4, Vol. 4, 2010, pp. 144-153 (citation at pp.
2)
Şerban, G., LASG – A Logic Architecture for Intelligent Agents, Studia Universitatis “BabeşBolyai”, Informatica, XLVII(2), 2002, pp.13-22
cited in
1. Bogdan Patrut, Agenti inteligenti in sisteme de monitorizare distribuita, teza doctorat,
2008
Şerban, G., Tătar, D., UBB System at Senseval-3, Proceedings of Senseval-3: The Third
International Workshop on the Evaluation of Systems for the Semantic Analysis of Text,
ACL 2004, Barcelona , July 2004, pp.226-228
cited in
1. Mandana Hamidi , Ali Borji , Saeed Shiry Ghidary, Persian Word Sense
Disambiguation,15th ICEE conference, Tehran, Iran, 15-17 May 2007, pp.114-118
(citation at pp. 1)
Czibula, G., Czibula, I.G., Cojocar, G.S., Guran, A., Decision support system for software
maintenance and evolution, KEPT 2009, Knowledge Engineering: Principles and
Techniques, International Conference, Babes-Bolyai University, 2009, pp. 181-184
cited in
1. Esteban J. Palomo, Enrique Dominguez, Rafael M. Luque, and Jose Munoz, A SelfOrganized Multiagent System for Intrusion Detection, Lecture Notes in Computer
Science 5680, pp. 84–94, 2009 (citation at pp. 84) (ISI Proceedings)
Czibula, I.G., Czibula (Serban), G., Hierarchical Clustering based Automatic Refactorings
Detection, WSEAS Transactions on Electronics, Issue 7, Vol.5, July 2008, pp. 291-302
cited in
1. AMAL ABD EL-RAOUF, Hierarchical Clustering of Distributed Object-Oriented
Software Systems: A Generic Solution for Software-Hardware Mismatch, Wseas
Transactions on Computers, Issue 11, Volume 8, November 2009, pp. 1780-1789
(citation at pp. 1782)
2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A
Systematic Literature Review, Information and Software Technology, 58(2015), pp.
231-249 (ISI)
Câmpan, A., Şerban, G., Marcus, A., Relational Association Rules and Error Detection,
Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 31-36
cited in
1. Arazay Armas Santos, “HERRAMIENTA PARA LA DETECCIÓN DE ERRORES
USANDO REGLAS DE ASOCIACIÓN ”, Lucrare de Diploma, University Las
Villas, 2009, pp. 1-19 (citation at pp. 10)
Moldovan, G.S, Şerban, G., Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques, Proceedings of International workshop TEAM'06, 2006,
pp. 13-16
cited in
1. Pradeep Rai, Shubha Singh, A Survey of Clustering Techniques, International Journal
of Computer Applications (0975 – 8887), Volume 7– No.12, October 2010, pp. 1-5
2. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
Czibula, I.G., Czibula, G., A partitional clustering algorithm for improving the structure of
object-oriented software systems, Studia Universitatis "Babes-Bolyai", Informatica, LIII(2),
2008, pp. 105-114
cited in
1. Sarge Rogatch, Automatic Structure Discovery for Large Source Code, Master
Thesis, Univ. of Amsterdam, 2010
2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of
Software Engineering and Applications, 2012, 5, Published Online July 2012
(http://www.SciRP.org/journal/jsea) (citation at pp. 2)
Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain algorithm for
Word Sense Disambiguation, KEPT 2007, Knowledge Engineering: Principles and
Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 41-49
cited in
1. Mert, E., Word sense disambiguation for Turkish, ISCIS 2009, Proceedings of The
24th International Symposium on Computer and Information Sciences, 2009, pp.
205-210
Moldovan, G.S, Şerban, G., A Formal Model for Partitioning Based Aspect Mining,
INFOCOMP Journal of Computer Science, Brazilia, Volume 6 - n. 3 - September 2007, pp.
19-26
cited in
1. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
2. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting
concerns identification, Proceedings of the 8th International Conference on Software
Engineering,
parallel
and
distributed
systems
(SEPADS '09), Cambridge, UK, 2009, pp. 111-116
cited in
1. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
2. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
3. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
4. I. Grbavac, K. Fertalj, V. Batoš, Design of template generator and its role in software
lifecycle, INTERNATIONAL JOURNAL OF MATHEMATICS AND
COMPUTERS IN SIMULATION Volume 8, 2014, pp. 127-134
5. McFadden, R.R., Survey of aspect mining case study software and benchmarks,
Proceedings of IEEE, Southeastcon, 2013, pp. 4-7 (ISI Proceedings)
6. Ivan Grbavac, Improvement of Software Development Process with use of Template
Generator, Technivcal Report, Faculty of Electrical Engeneering an Computing,
University of Zagreb, 2013
7. EK Fillus, Caampi: Uma abordagem baseada em técnicas de agrupamento para
mineração de aspectos e identificação de pontos de corte., PhD Thesis, 2012, UFPR,
Brasil
8. EK Fillus, SR Vergilio, Uma Avaliaç ao do Uso de Diferentes Algoritmos de
Agrupamento e Medidas de Distância para Mineraç ao de Aspectos, echnicla Report,
2012, UFPR, Brasil
9. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering
Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (50)
Şerban, G., Moldovan, G.S, A New Genetic Clustering Based Approach in Aspect Mining,
The 8th WSEAS International Conference on Mathematical Methods And Computational
Techniques In Electrical Engineering (MMACTEE '06), Bucureşti, 2006, pp. 135-140
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
2. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
3. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Şerban, G., Moldovan, G.S, A Graph Algorithm for Identification of Crosscutting Concerns,
Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.3-10
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
2. Zhu, Jianlin, Huang, Jin, Zhou, Daicui, Carminati, Federico, Zhang, Guoping, He,
Qiang, Identifying composite crosscutting concerns through semi-supervised
learning, Software: Practice and Experience, http://dx.doi.org/10.1002/spe.2234,
2013 (ISI)
3. McFadden, R.R.; Mitropoulos, F.J., "Survey of aspect mining case study software
and benchmarks," Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,5, 4-7
April 2013 (ISI Proceedings)
Czibula. I.G., Czibula, G., Cojocar, G.S., Hierarchical Clustering for Identifying
Crosscutting Concerns in Object Oriented Software Systems, , INFOCOMP Journal of
Computer Science, Volume 8, Number 3, Brazilia, 2009, pp. 21-28.
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of
Software Engineering and Applications, 2012, 5, Published Online July 2012
(http://www.SciRP.org/journal/jsea) (citation at pp. 1)
3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
Czibula, G., Cojocar, G.S, Czibula, I.G., A partitional clustering algorithm for crosscutting
concerns identification, Proceedings of the 8th International Conference on Software
Engineering,
parallel
and
distributed
systems
(SEPADS '09), Cambridge, UK, 2009, pp. 111-116
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
2. I. Grbavac, K. Fertalj, V. Batoš, Design of template generator and its role in software
lifecycle, INTERNATIONAL JOURNAL OF MATHEMATICS AND
COMPUTERS IN SIMULATION Volume 8, 2014, pp. 127-134
3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
4. William Tribbey and Frank Mitropoulos. 2012. Construction and analysis of vector
space models for use in aspect mining. In Proceedings of the 50th Annual Southeast
Regional Conference(ACM-SE '12). ACM, New York, NY, USA, 220-225.
5. McFadden, R.R., Survey of aspect mining case study software and benchmarks,
Proceedings of IEEE, Southeastcon, 2013, pp. 4-7
6. Ivan Grbavac, Improvement of Software Development Process with use of Template
Generator, Technical Report, Faculty of Electrical Engeneering an Computing,
University of Zagreb, 2013
7. EK Fillus, Caampi: Uma abordagem baseada em técnicas de agrupamento para
mineração de aspectos e identificação de pontos de corte., PhD Thesis, 2012, UFPR,
Brasil
8. EK Fillus, SR Vergilio, Uma Avaliaç ao do Uso de Diferentes Algoritmos de
Agrupamento e Medidas de Distância para Mineraç ao de Aspectos, Technical
Report, 2012, UFPR, Brasil
9. Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering
Analysis. Doctoral dissertation. Nova Southeastern University. Retrieved from
NSUWorks, Graduate School of Computer and Information Sciences. (50)
Czibula, G., Cojocar, G.S., Czibula. I.G., Identifying Crosscutting Concerns Using
Partitional Clustering, Wseas Transactions on Computers, Issue 2, Volume 8, 2009, pp. 386395
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
Cojocar, G.S., Czibula, G., Czibula. I.G., A Comparative Analysis of Clustering Algorithms
in Aspect Mining, Studia Universitatis "Babes-Bolyai", Informatica, LIV(1), 2009, pp. 75-84
cited in
1. McFadden, R.R.; Mitropoulos, F.J.; , Aspect mining using model-based
clustering, Southeastcon, 2012 Proceedings of IEEE , vol., no., pp.1-8, 15-18 March
2012 (ISI Proceedings)
2. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of
Software Engineering and Applications, 2012, 5, Published Online July 2012
(http://www.SciRP.org/journal/jsea) (citation at pp. 1)
3. Edison Klafke Fillus, Silvia Regina Vergilio, A Clustering Based Approach for
Aspect Mining and Pointcut Identification, Latin American Workshop on AspectOriented Software Development (LA-WASP), pp. 1-6, 2012, Brazil
4. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Şerban, G., Czibula, I.G., Restructuring Software Systems Using Clustering, ISCIS 2007,
Proceedings of The 22th International Symposium on Computer and Information Sciences,
November 7-9, Ankara, Turkey, 2007, pp. 262-267
cited in
1. Lazhar Sadaoui, Mourad Badri, Linda Badri, Improving Class Cohesion
Measurement: Towards a Novel Approach Using Hierarchical Clustering, Journal of
Software Engineering and Applications, 2012, 5, Published Online July 2012
(http://www.SciRP.org/journal/jsea) (citation at pp. 1)
2. Jehad Al Dallal, Identifying Refactoring Opportunities in Object-Oriented Code: A
Systematic Literature Review, Information and Software Technology, 58(2015), pp.
231-249 (ISI)
Tătar, D., Şerban, G., Lupea, M., Text Entailment Verification with Text Similarities, KEPT
2007, Knowledge Engineering: Principles and Techniques, Babes-Bolyai University, June 68, 2007, Cluj-Napoca, pp. 33-40
cited in
1. Perini, A. 2012. DirRelCond3: Detecting Textual Entailment Across Languages With
Conditions On Directional Text Relatedness Scores, First Joint Conference on
Lexical and Computational Semantics (*SEM), pages 710–714, Montreal, Canada,
June 7-8, 2012.
Tătar, D., Şerban, G., Mihiş, A., Lupea, M., Lupşa, D., Frenţiu, M., Chain algorithm for
Word Sense Disambiguation, KEPT 2007, Knowledge Engineering: Principles and
Techniques, Babes-Bolyai University, June 6-8, 2007, Cluj-Napoca, pp. 41-49
cited in
1. Lin Lin Yu et al., A Multi-Strategy Word Sense Disambiguation Method, 2012,
Applied Mechanics and Materials, 182-183, 2109
Czibula, G., Bocicor, M.I., Czibula, I.G., Solving the Protein Folding Problem Using a
Distributed Q-Learning Approach, International Journal of Computers, Volume 5, Issue 3,
2011, pp. 404-413
cited in
1. Ionel Muscalagiua, Anca Iordana, Mihaela Osacia, Manuela Pãnoiu, Modeling and
simulation of the protein folding problem in DisCSPNetlogo, AWERProcedia
Information Technology & Computer Science 2 (2012) 137-144
2. Ionel Muscalagiu, Horia Emil Popa, Manuela Panoiu, Viorel Negru, Multi-agent
Systems Applied in the Modelling and Simulation of the Protein Folding Problem
Using Distributed Constraints, Multiagent System Technologies, Lecture Notes in
Computer Science Volume 8076, 2013, pp 346-360
3. F. Campeotto, A. Dovier, and E. Pontelli, Protein Structure Prediction on GPU: a
Declarative Approach in a Multi-agent Framework, International Conference on
Parallel Processingm, ICPP conference (IEEE) http://icpp2013.ens-lyon.fr/ Lyon
(FR), October 2013 (ISI Proceedings)
4. Manuel Rodriguez-Pascual, Rafael Ma Mayo-García, Ignacio M. Llorente,
MONTERA: A FRAMEWORK FOR EFFICIENT EXECUTION OF MONTE CARLO
CODES ON GRID INFRASTRUCTURES, COMPUTING AND INFORMATICS,
VOL 32, NO 1 (2013), pp. 113-144 (ISI)
5. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft
Computing, Available online 16 October 2014, ISSN 1568-4946,
http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI)
6. BF Gauna, Modular Multi-Agent Reinforcement Learning of Linked MultiComponent Robotic Systems, PhD Thesis, 2012, The University of the Basque
7. B Fernandez-Gauna, M Graña, Distributed Round-Robin Q-Learning, Universidad de
Pais-Vasco, Technical Report, 2012
8. B Fernandez-Gauna, Etxeberria-Agiriano, Improved Distributed Round-Robin QLearning for Linked Multicomponent Robotic System control, Universidad de PaisVasco, Technical Report, 2012
9. Fernandez-Gauna B, Etxeberria-Agiriano I, Graña M (2015) Learning Multirobot
Hose Transportation and Deployment by Distributed Round-Robin Q-Learning. PLoS
ONE 10(7): e0127129. doi:10.1371/journal.pone.0127129 (ISI)
Şerban, G., Czibula, I.G., Câmpan, A., A Programming Interface For Medical Diagnosis
Prediction, Studia Universitatis "Babes-Bolyai", Informatica, LI(1), 2006, pp. 21-30
cited in
1. Jeetesh Kumar Jain, Nirupama Tiwari, Manoj Ramaiya, A Survey: On Association
Rule Mining, International Journal of Engineering Research and Applications
(IJERA), Vol. 3, Issue 1, January -February 2013, pp.2065-2069
2. Jain, J.K.; Tiwari, N.; Ramaiya, M., "Mining Positive and Negative Association Rules
from Frequent and Infrequent Pattern Using Improved Genetic Algorithm,"
Computational Intelligence and Communication Networks (CICN), 2013 5th
International Conference on , vol., no., pp.516-521, 27-29 Sept. 2013
3. Kumudha, P, Venkatesan, R., Engimuri, P. G. Radhika, Product Metrics Based
Predictive Classification of Software Using RAR Mining and Naive Bayes Approach,
International Journal of Applied Engineering Research. 2015, Vol. 10 Issue 7,
p17375-17391. 17p.
4. Mir Md. Jahangir Kabir , Shuxiang Xu, Byeong Ho Kang, Zongyuan Zhao, A New
Evolutionary Algorithm for Extracting a Reduced Set of Interesting Association
Rules, Chapter Neural Information Processing, Volume 9490 of the series Lecture
Notes in Computer Science pp 133-142, 10 November 2015
Şerban, G., Câmpan, A., A New Core-Based Method For Hierarchical Incremental
Clustering, Proceedings of the 7th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC'05), Timisoara, Romania, IEEE Computer
Society Press, 2005, pp. 77-82, D. Zaharia (Ed.), ISBN 07695-2453-2
cited in
1. Muhammad Shoaib, Wang-Cheol Song, Clustering Objects in Heterogeneous
Information Network Using Fuzzy C-Mean, Mobile, Ubiquitous, and Intelligent
Computing Lecture Notes in Electrical Engineering Volume 274, 2014, pp 179-184
Zsuzsanna Marian, Gabriela Czibula, Istvan Gergely Czibula, Using Software Metrics for
Automatic Software Design Improvement, Studies in Informatics and Control, ISSN 12201766, vol. 21 (3), pp. 249-258, 2012
cited in
1. D. Bocu, R. Bocu, Remarks on Interface Oriented Software Systems Modelling, INT J
COMPUT COMMUN, ISSN 1841-9836 8(5):662-672, October, 2013.
(ISI)
Câmpan, A., Şerban, G., Truţă, M., Marcus, A., An Algorithm for the Discovery of Arbitrary
Length Ordinal Association Rules, DMIN'06, The 2006 International Conference on Data
Mining, Las Vegas, USA, Sven F. Crone (Ed.), CSREA Press, USA, ISBN: 1-60132-004-3,
pp. 107-113,
cited in
1. BAN, TIBERIU, FUZZY COMPUTING FOR COMPLEXITY LEVEL OF
EVALUATION TESTS, Studia Universitatis Babes-Bolyai, Informatica . Mar2013,
Vol. 58 Issue 1, p81-92. 12p
2. Bocicor, M.I. A STUDY ON USING ASSOCIATION RULES FOR PREDICTING
PROMOTER SEQUENCES, Studia Universitatis Babes-Bolyai, Informatica .
Jun2012, Vol. 57 Issue 2, p32-42
Şerban, G., Câmpan, A., Czibula, I.G., A Programming Interface For Finding Relational
Association Rules, International Journal of Computers, Communications and Control, Vol.
I/2006, Proceedings of the International Conference on Computers, Communications and
Control, ICCCC 2006, Oradea, 2006, pp. 934-944
cited in
1. MARIAN, ZSUZSANNA, A STUDY ON ASSOCIATION RULE MINING BASED
SOFTWARE DESIGN DEFECT DETECTION, Studia Universitatis Babes-Bolyai,
Informatica . Mar2013, Vol. 58 Issue 1, p42-57
2. Bocicor, Maria Iuliana, A STUDY ON USING ASSOCIATION RULES FOR
PREDICTING PROMOTER SEQUENCES, Studia Universitatis Babes-Bolyai,
Informatica . Jun2012, Vol. 57 Issue 2, p32-42
Czibula, G., Bocicor, M. I., Czibula, I.G., Promoter Sequences Prediction Using Relational
Association Rule Mining, Evolutionary Bioinformatics, Vol. 8, 2012, pp. 181-196
cited in
1. G. Karli, PROMOTER PREDICTION USING IREM (INDUCTIVE RULE
EXTRACTION METHOD), International Journal of Engineering Research and
Science & Technology, Vol. 3, No. 1, pp. 63-70, 2014
2. Günay Karl, Şenol Doğan, Adem Karadağ, Computational Approach for Promoter
Identification with data Mining Techniques, IOSR Journal of Engineering (IOSRJEN)
Vol. 04, Issue 01 (January. 2014), PP 31-41, 2014
3. Tannu Kumari and Kamal Raj Pardasani. 2015. Mining amino acid association
patterns in class B GPCRs. Int. J. Bioinformatics Res. Appl. 11, 3 (May 2015), 219232.
Czibula, G., Cojocar, G.S., Czibula, I.G., Evaluation Measures For Partitioning Based
Aspect Mining Techniques, International Journal of Computers, Communications and
Control, 6(1), 2011, pp. 72-80
cited in
1. McFadden, R.R.; Mitropoulos, F.J., Survey and analysis of quality measures used in
aspect mining, Southeastcon, 2013 Proceedings of IEEE , vol., no., pp.1,8, 4-7 April
2013
2. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Tătar, D., Mihiş, A., Czibula G., Lexical Chains Cohesion Segmentation in Summarization,
SYNASC 2008, The 10th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Timişoara, 2008, IEEE Society Press, pp. 95-101
cited in
1. Huang, Chuen-Min, Chang, Yen-Jia, Applying a Lightweight Iterative Merging
Chinese Segmentation in Web Image Annotation, Machine Learning and Data Mining
in Pattern Recognition, Lecture Notes in Computer Science Volume 7988, Springer
Berlin Heidelberg, 2013, pp. 183-194
Bocicor, M. I., Czibula, G., Czibula, I.G., A Reinforcement Learning Approach for Solving
the Fragment Assembly Problem, Proceedings of the 13th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2011, IEEE
Computer Society, pp. 191-198, 2011
cited in
1. Ko-Wei Huang, Jui-Le Chen, Chu-Sing Yang, Chun-Wei Tsai, A memetic particle
swarm optimization algorithm for solving the DNA fragment assembly problem,
Neural Computing and Applications, July 2014, DOI 10.1007/s00521-014-1659-0
(ISI)
2. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft
Computing, Available online 16 October 2014, ISSN 1568-4946,
http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI)
Czibula, G., Bocicor, M.I., Czibula, I.G., A Distributed Reinforcement Learning Approach
for Solving Optimization Problems, in Recent Researches in Communications and IT,
Proceedings of the 5th International Conference on Communications and Information
Technology (CIT '11), Greece, 2011, pp. 25-30
cited in
1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft
Computing, Available online 16 October 2014, ISSN 1568-4946,
http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI)
Czibula G., Bocicor, M.I., Czibula, I.G., A Reinforcement Learning Model for Solving the
Folding Problem, IJCTA - International Journal of Computer Technology and Applications,
Vol. 2, Issue 1, 2011, pp. 171-182
cited in
1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft
Computing, Available online 16 October 2014, ISSN 1568-4946,
http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI)
Czibula, G., Bocicor, M.I., Czibula, I.G., An Experiment on Protein Structure
Prediction using Reinforcement Learning, Studia Babes-Bolyai Informatica, LVI (1), 2011,
pp. 25-34
cited in
1. Berat Doğan, Tamer Ölmez, A novel state space representation for the solution of 2DHP protein folding problem using reinforcement learning methods, Applied Soft
Computing, Available online 16 October 2014, ISSN 1568-4946,
http://dx.doi.org/10.1016/j.asoc.2014.09.047. (ISI)
Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Software Defect Prediction
using Relational Association Rule Mining, Information Sciences, Vol. 264, April 2014, pp.
260-278
cited in
1. Ezgi Erturk, Ebru Akcapinar Sezer, A Comparison of Some Soft Computing Methods
for Software Fault Prediction, Expert Systems with Applications, Available online 23
October 2014, ISSN 0957-4174, http://dx.doi.org/10.1016/j.eswa.2014.10.025.
(http://www.sciencedirect.com/science/article/pii/S0957417414006496) (ISI)
2. K.R.Sekar, S.Devasena, K.S.Ravichandran, and J Sethuraman, WS COMPONENT
SELECTION BY IMPROVISED HIGH HIT RATIO USING SIMPLE JACCARD
COSINE DISTANCES WITH MODI’S COST EFFECTIVENESS, ARPN Journal of
Engineering and Applied Sciences, Vol. 9, No. 10, 2014
3. Nguyen, Giang, Le, Tuong, Vo, Bay, Le, Bac, EIFDD: An efficient approach for
erasable itemset mining of very dense datasets, J Applied Intelligence, , Springer US,
8 2015-01-15 (ISI)
4. Fedja Hadzic, Michael Hecker, Andrea Tagarelli, Ordered subtree mining via
transactional mapping using a structure-preserving tree database schema, Information
Sciences, volume 310, 2015, pp. 97 - 117 (ISI)
5. Liuqian Jin, Jun Liu, Yang Xu, Xin Fang, A novel rule base representation and its
inference method using the evidential reasoning approach, Knowledge-Based
Systems,
Available
online
2
July
2015,
ISSN
0950-7051,
http://dx.doi.org/10.1016/j.knosys.2015.06.018 (ISI)
6. Ezgi Erturk, Ebru A. Sezer, Software Fault Inference Based on Expert Opinion,
Journal of Software, vol. 10, no. 6, 2015, pp. 757-766
7. Kumudha, P, Venkatesan, R., Engimuri, P. G. Radhika, Product Metrics Based
Predictive Classification of Software Using RAR Mining and Naive Bayes Approach,
International Journal of Applied Engineering Research. 2015, Vol. 10 Issue 7,
p17375-17391. 17p.
8. Cong Jin, Shu-Wei Jin, Prediction approach of software fault-proneness based on
hybrid artificial neural network and quantum particle swarm optimization, Applied
Soft Computing, Volume 35, October 2015, Pages 717-725, ISSN 1568-4946 (ISI)
9. Almasi, M., Abadeh, M.S., Rare-PEARs: A new multi objective evolutionary
algorithm to mine rare and non-redundant quantitative association rules, KnowledgeBased Systems volume 89, issue , year 2015, pp. 366 – 384 (ISI)
10. Alenezi, Mamdouh; Abunadi, Ibrahim, Evaluating Software Metrics as Predictors of
Software Vulnerabilities, INTERNATIONAL JOURNAL OF SECURITY AND ITS
APPLICATIONS Volume: 9 Issue: 10 Pages: 231-239 , 2015 (ISI)
11. Tomar, Divya; Agarwal, Sonali, Prediction of Defective Software Modules Using
Class Imbalance Learning, APPLIED COMPUTATIONAL INTELLIGENCE AND
SOFT COMPUTING Article Number: 7658207 Published: 2016 (ISI)
12. Liu, Wangshu; Liu, Shulong; Gu, Qing; et al., Empirical Studies of a Two-Stage Data
Preprocessing Approach for Software Fault Prediction, IEEE TRANSACTIONS ON
RELIABILITY Volume: 65 Issue: 1 Pages: 38-53 Published: MAR 2016 (ISI)
13. Yasir Javed, Mamdouh Alenezi, Defectiveness Evolution in Open Source Software
Systems, Procedia Computer Science, Volume 82, 2016, Pages 107-114, ISSN 18770509
14. Ming Cheng, Guoqing Wu, Min Jiang, Hongyan Wan, Guoan You, Mengting Yuan,
Heterogeneous Defect Prediction via Exploiting Correlation Subspace, SEKE 2016,
Software Engineering and Knowledge Engineering, 2016
15. Naufal, M.F., Rochimah, S., Software complexity metric-based defect classification
using FARM with preprocessing step CFS and SMOTE a preliminary study (2015)
2015 International Conference on Information Technology Systems and Innovation,
ICITSI 2015
16. Kumudha, P., Venkatesan, R., Hybrid GSA-CSSA based emotional ELMAN neural
network classifier for software defect prediction, International Journal of Applied
Engineering Research, Volume 11, Issue 5, 1 March 2016, Pages 3255-3270
17. Kumari, D., Rajnish, K., A new approach to find predictor of software fault using
association rule mining, International Journal of Engineering and Technology,
Volume 7, Issue 5, 1 November 2015, Pages 1671-1684
18. Saini, P.K., Tomar, D., Agarwal, S., High numeric coherent association rule mining
with a particular categorical consequent class attribute (2015) 9th International
Conference on Industrial and Information Systems, ICIIS 2014
19. Ming Cheng, Guoqing Wu, Min Jiang, Hongyan Wan, Guoan You, Mengting Yuan,
Heterogeneous Defect Prediction via Exploiting Correlation Subspace, Proceedings
of SEKE 2016, DOI: 10.18293/SEKE2016-090
Czibula, G., Czibula, I.G., Găceanu, R.D., A Support Vector Machine Model For Intelligent
Selection of Data Representations, Applied Soft Computing, Volume 18, May 2014, Pages
70–81
cited in
1. Jian Hua Cao, Fault Diagnosis for Electrical Control System of Automobile Based on
Support Vector Machine, Applied Mechanics and Materials (Volume 666), 2014, pp.
203-207
2. Philippe Lauret, Cyril Voyant, Ted Soubdhan, Mathieu David, Philippe Poggi, A
benchmarking of machine learning techniques for solar radiation forecasting in an
insular context, Solar Energy, Volume 112, February 2015, Pages 446-457, ISSN
0038-092X, http://dx.doi.org/10.1016/j.solener.2014.12.014 (ISI)
3. Zhiquan Qi, Bo Wang, Yingjie Tian, Peng Zhang, When Ensemble Learning Meets
Deep Learning: a New Deep Support Vector Machine for Classification, KnowledgeBased Systems, Available online 30 May 2016 (ISI)
Czibula, I.G., Şerban, G., Identifying Design Patterns in Object-Oriented Software Systems
Using Unsupervised Learning, 2008 IEEE-TTTC International Conference on Automation,
Quality and Testing, Robotics, AQTR 2008, pp. 347-352
cited in
1. Soliman et al, Patterns Mining from Java Source Code, Int.J. of Software
Engineering, IJSE Vol.4 No.2 July 2011, pp. 19-40
Czibula, G., Crișan C.G., Pintea, M.C, Czibula, I.G., Soft computing approaches on the
bandwidth problem, Informatica, Vilnius, Lithuania, 2013, Vol. 24, No. 1, pp. 1–12
cited in
1. Guilherme Oliveira Chagas, Sanderson L. Gonzaga de Oliveira, Metaheuristic-based
Heuristics for Symmetric-matrix Bandwidth Reduction: A Systematic Review,
Procedia Computer Science, Volume 51, 2015, Pages 211-220
Bocicor, M. I., Czibula, G., Czibula, I.G., A Distributed Q-Learning Approach to Fragment
Assembly, SIC Journal, Studies in Informatics and Control, Vol. 20, Issue. 3, 2011, pp. 221232
cited in
1. Fernandez-Gauna B, Etxeberria-Agiriano I, Graña M (2015) Learning Multirobot
Hose Transportation and Deployment by Distributed Round-Robin Q-Learning. PLoS
ONE 10(7): e0127129. doi:10.1371/journal.pone.0127129 (ISI)
Gabriela Czibula, Zsuzsanna Marian, Istvan Gergely Czibula, Detecting Software Design
Defects Using Relational Association Rule Mining, Knowledge and Information Systems,
Vol. 42, Number 3, 2015, pp. 545-577 (IF=1.782)
cited in
1. H. He, T. Yin, J. Dong, P. Zhang, J. Ren, Efficient mining of high utility software
behavior patterns from software executing traces, International Journal of Innovative
Computing, Information and Control, 11(5), 2015, pp. 1779-1793
2. Guoyan Huang, Rui Gao, Jiandi Wang, Jiaming Yan, and Jiadong Ren, AN
EFFICIENT ALGORITHM FOR MINING HIGH UTILITY CONTIGUOUS
PATTERNS FROM SOFTWARE EXECUTING TRACES, International Journal of
Innovative Computing, Information and Control, Volume 12, Number 3, June 2016
, pp. 1349-4198
Sȋrbu, A., Czibula, G., Bocicor, M.I., Dynamic clustering of gene expression data using a
fuzzy approach, The 16th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2014, IEEE Computer Society, pp. 220-227, 2014
cited in
1. Jan Janoušek , Petr Gajdoš, Michal Radecký, Václav Snášel, Application of Bioinspired Methods Within Cluster Forest Algorithm, Proceedings of the Second
International Afro-European Conference for Industrial Advancement AECIA 2015,
Volume 427 of the series Advances in Intelligent Systems and Computing pp 237-247
Şerban, G., Cojocar, G.S, A New Hierarchical Agglomerative Clustering Algorithm in
Aspect Mining, BCI'07, Proceedings of the 3rd Balkan Conference in Informatics, 27-29
September 2007, Sofia, Bulgaria, pp. 143-152
cited in
1. Ingrid Marçal , Rogério Eduardo Garcia, Danilo Medeiros Eler, Celso Olivete Junior,
Ronaldo C. M. Correia, Techniques for the Identification of Crosscutting Concerns: A
Systematic Literature Review, Information Technolog: New Generations, Volume 448
of the series Advances in Intelligent Systems and Computing pp 569-579, 29 March
2016 (ISI Proceedings)
Moldovan, G.S, Şerban, G., A Study on Distance Metrics for Partitioning Based Aspect
Mining, Studia Universitatis "Babes-Bolyai", Informatica, LI(2), 2006, pp.53-60
cited in
1. David G. Bethelmy, Aspect Mining Using Multiobjective Genetic Clustering
Algorithms, Doctoral dissertation, Nova Southeastern University, 2016 Retrieved
from NSUWorks, College of Engineering and Computing. (952)
Related documents