Download 5.D.3. Joint Probability Distributions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.D.3.
Joint Probability Distributions
Let X and Y be stochastic variables on S with values
X  S   x1, x2 ,

Y  S    y1, y2 ,

The product set
X S  Y S  
 x , y  ,  x , y  , ,  x , y  , 
1
1
1
2
i
is a probability space if every ordered pair
j
x , y 
i
j
is assigned a probability
P  X  xi , Y  y j   f  xi , y j 
where f  xi , y j  is called the joint probability distribution of X and Y.
The switch to continuous stochastic variables is easily accomplished by making use of
the joint probability distribution density f  x, y  defined by
P  x  X  x  x, y  Y  y  y   f  x, y  xy
and replacing all sums with integrals.
By definition, f obeys the usual properties of a probability density, namely,
1.
Positive-definiteness:
f  x, y   0 .
2.
Normalization:
  dxdy f  x, y   1 .
Making use of the addition principle (see §5.B), we have
f X  x    dyf  x, y 
fY  y    dxf  x, y 
(5.22)
The covariance of X and Y is defined by
cov  X , Y     dxdy  x  X
 y 
Y
 f  x, y 
   dxdy  xy  x Y  y X  X Y
 XY  X Y  Y
X  X Y
 XY  X Y
(5.24)
The correlation of X and Y is defined by
cov  X , Y 
corr  X , Y  
(5.25)
 XY

X
XY  X Y
 X
2
 f  x, y 
2
 Y
2
 Y
2

It is dimensionless with the following easily proved properties:
corr  X ,Y   corr Y , X  .
1.
Symmetric:
2.
corr  X , X   1 ,
3.
1  corr  X ,Y   1 .
4.
corr  aX  b, cY  d   corr  X ,Y 
corr  X ,  X   1 .
if
a, c  0 .
Note that pairs of stochastic variables with identical distributions can have different
correlations if the joint distributions are different.
If X and Y are statistically independent, we have
1.
f  x, y   f X  x  fY  y  .
2.
XY  X Y .
3.
 X Y 
4.
2
 X Y
2
 X2  X
2
 Y2  Y
2
.
cov  X , Y   0 .
Note that cov  X , Y   0 does not imply X and Y are statistically independent.
Consider the variable
z  G  x, y 
where G is a known function of x and y.
The probability density f Z  z  for the stochastic variable Z is given by
f Z  z     dxdy  z  G  x, y   f  x, y 
(5.26)
Using
  x 
1
dke  ikx
2 
we have
fZ  z 
1
2
   dkdxdye
 ik  z G  x , y 
f  x, y 
which, on comparison with
fZ  z  
1
dke  ikzZ  k 
2 
gives
Z  k     dxdyeikG x , y  f  x, y 
(5.28a)
If X and Y are statistically independent, i.e.,
f  x, y   f X  x  fY  y 
we have
Z  k     dxdyeikG x , y  f X  x  fY  y 
(5.28)
For example, if
G  x, y   x  y
then
Z  k     dxdyeik  x  y  f X  x  fY  y 
 X  k  Y  k 
(5.29)
i.e., the characteristic function of the sum of 2 independent stochastic variables is the
product of their characteristic functions.
Related documents