Download Introduction Why biomolecule

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
RAFT 聚合在生物领域中的应用(一)
Boyer C., Bulmus, V., Davis T. P., Ladmiral V., Liu J., Perrier S. Chemical
Review 2009, 109, 5402-5436.
(作者按姓氏字母顺序排列。本人负责Bioconjugates 部分的编写)
1. Biomolecule-Polymer Conjugates (生物分子和高分子复合物)
Introduction
胚胎干细胞对特定老鼠基因的改造和干扰
Introduction
Why biomolecule-Polymer Conjugates?
Biomolecule-polymer conjugate
Attachment of polymer to biomolecules Improves their stability, solubility and
biocompatibility. It also benefits for the biomolecule’s self-assembly, patterning and
phase behavior.
Maynard, H. D., Heredia K. L. Organic & Biomolecular Chemistry, 2007, 5 (1): 45-53
 Medicine and biotechnology1
1. Vincent, M. J., Duncan, R, Trends in Biotechnology,
2005, 24, 39-47.
 Bio-separations2
 Biosensors3
2. Roy, I., Gupta, M., N., Chemistry and Biology, 2003, 10, 1161-71.
3. Ghica, M. E., Brett, C. M. A., Electroanalysis, 2006, 18, 748-56.
 Diagnosis of diseases4
 Drug delivery5
4. Duncan, R., Nature Reviews of Drug Discovery, 2003, 2, 347-60.
5. Kikuchi, A., Okano, T., Advanced Drug Delivery Review, 2002, 54, 53–77.
 “Graft to”
 “Graft from”
In-situ grafting
Initiator
Introduction
Methods to Prepare Biomolecule-Polymer Conjugates
a) Post-polymerization Conjugation
Polymer
Biomolecule
Biomolecule-polymer conjugate
Drawbacks:
 Multiple steps
 Complicated purification process
 Unavoidable non-specific adsorption
 Multi-site attachment
 Low yield
Introduction
Methods to Prepare Biomolecule -polymer Conjugates
b) In situ polymerization
In situ polymerization
Biomolecule
Biomolecule -polymer conjugate
Advantages
 Less steps
 Less-purification
 Easy to control
 High yield
Introduction
Reversible Addition Fragmentation Chain-Transfer (RAFT)
Polymerisation
a. Atom transfer radical polymerization (ATRP)
 Synthesize well-defined polymeric architectures with predictable MW and
PDI
 Supply a good technique to prepare well-defined protein-polymer
conjugate
b. RAFT polymerization

Polymerize more versatile monomers in more flexible reaction
conditions for a wide range of polymeric architectures

Get rid of the metal catalyst which might complex with some functional
groups on proteins and damage the protein bioactivity.
2. In-situ Synthesis of Protein-polymer Conjugates
-Initiated RAFT
Polymerization
BSA
-S
S
S
S C S
BSA
-S
S
S
S C S
BSA-Polymer Conjugate
J. Liu, V. Bulmus, D. L. Herlambang, C. Barner-Kowollik, M. H. Stenzel,
T. P. Davis, Angew. Chem. Int. Ed. 2007, 46, 3099-3103.
S
O
C
S
O
S
O
C
C
S
S
C
S
S
HS
N
O
H
N
BSA
S
BSA
PEG-A/  irradiation
H2O/DMF
nS
O
O
S
+
S
(2)
BSA
(1)
S
2-pyridinethione
S
O
C
C
S
BSA
S
O
S
(3)
BSA-polymer conjugate
O
8~9
3. Heterotelechelic Protein-Polymer-Biomolecule Conjugates
O
O
N
S
O
S
S
C
S
N
C
C
S
O
S
H2O / DMF
S
BDPET
O
O
N
S
O
S
S
C
BSA
S
PEG-A
C
S
C
S
O
VA-044/250C
S
S
O
O
N
S
O
S
S
C
n
O S
C
S
C
SH
S
O
S
O
Thiocholesterol or thiol terminated
rhodamine B isothiocyanate
SH =
O
n= 8~9
O
O
S
S
O
S
C
n
O S
C
S
C
O
S
S
O
O
n= 8~9
Jingquan Liu, Huiyun Liu, Volga Bulmus, Lei Tao, Cyrille Boyer, Thomas P. Davis,
Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 1399-1405.
(IF,3.821) .
2.1 Modification of Bifunctional RAFT Agent
O
C
HO
C
S
S
C
O
O
O
O
Cl
SOCl2
OH
S
C
C
N
C
S
Cl
S
HO
S
S
O
O
N
TEA
CH3CN
S
O
S
S
C
C
N
C
S
S
O
S
S
a
b
c
f
N
S
S
d
O
O
e
C
a
g O
g
S
g
C
C
S
S
O
b
c
N
f
S
e
S
d
g
g
CDCl3
e
f
a
8.5
c,d
b
7.5
6.5
5.5
4.5
ppm
3.5
2.5
1.5
0.5
2.2 Conjugation of Bifunctional RAFT Agent to Protein
O
O
N
S
O
S
S
C
C
N
C
S
S
O
S
S
BSA
SH
O
O
N
H2O / DMF
S
S
O
S
C
C
S
C
S
O
BSA
S
S
1.0
BSA
Modified TRITT
BSA-TRITT conjugation mixture
H
N
Absorption
0.6
6
BSA-TRITT
BSA
S
0.4
RID response
0.8
4
2
0.2
0
0.0
250
300
350
Wavelength/nm
400
450
15
16
17
18
Retention time/min
19
20
2.3 Characterization---- GPC analysis
O
O
N
S
O
S
S
C
C
n
C
S
S
O
BSA
S
O S
O
O
n= 8~9
100
61.7
3.5
61.6
3
60
2
40
1.5
61.4
Response
Ln(M0/M t)
2.5
Conversion
4h polymerization
7h polymerization
10h polymerization
14h polymerization
23h polymerization
61.5
80
61.3
61.2
61.1
1
61.0
20
0.5
0
0
0
5
10
15
Polymerization time/ h
20
25
60.9
60.8
60.7
12
13
14
15
16
17
18
19
20
Retention time/ min
21
22
23
24
25
2.3 Characterization----Cleavage test
O
O
N
S
O
S
S
C
n
C
S
C
SH
O
BSA
O S
HS
O
O
5
n= 8~9
4h polymerization
7h polymerization
10h polymerization
14h polymerization
23h polymerization
3
2.8
100000
MW/ gmol-1
Response
3
120000
2
1
2.6
2.4
80000
2.2
60000
2
1.8
40000
1.6
1.4
20000
1.2
0
0
0
20
40
60
Conversion/ %
26
28
30
32
34
36
38
Retention time/ min
40
42
44
80
1
100
PDI
4
2.4 Characterization----End group check
O
O
N
S
S
S
C
O
n
C
C
S
S
O
BSA
S
O S
O
O
n= 8~9
O
O
Glu
SH
Glu
S
S
O
S
C
n
C
C
S
O
H
N
O
3.5
O
3.0
n= 8~9
BSA-polymer reacted with GSH
BSA-polymer
Absorbance
2.0
1.5
1.0
0.5
0.0
250
300
BSA
S
O S
H2O
2.5
S
350
Wavelength/ nm
400
450
S
3. Summary
 Bifunctional TRITT was successfully modified with pyridyl
disulfide groups on both sides
 The conjugation of bifunctional RAFT revealed that only
one BSA was attached on RAFT
 In-situ polymerization lead to synthesis of bioconjugates
with thiol reactive functional group in one step
 Sometimes research turned out to be much easier?
4. Conjugate of H2NO-KYNPKDKLLY with polymers
as anthrax toxin inhibitor
S
O
S
O
O
Special sequence peptide
O
O
O
Anthrax receptor
O
Polymer chain
O
O
O
Anthrax
N
N
O
peptide
O
P
E
G
This work was done with Prof Heather Maynard at
University of California Los Angeles (UCLA)
Jingquan Liu, Volga Bulmus, Thomas P. Davis, Ronald Li and Heather D Maynard,
Macromolecules, 48, 8-14, 2013. (IF, 5.167)
Tailoring the end groups and cleavage tests
Cholesterol Attachment and cyclodextrIn Complex
*
Eki Setijadi, Lei Tao, Jingquan Liu , Cyrille Boyer, Zhongfan Jia and Thomas P. Davis,
Biomacromolecules, 2009, 10 (9), pp 2699–2707.
Manipulation of the Bioactivity of Glucose Oxidase via RAFT
Controlled Surface Modification
X. Luo, J. Liu*, G. Liu, R. Wang, Z. Liu,J. Polym. Sci. Part A Polym. Chem, 2012,
50, 14, 2786-2793
Micelles/Vesicles as drug carrier
Related documents