Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
RAFT 聚合在生物领域中的应用(一) Boyer C., Bulmus, V., Davis T. P., Ladmiral V., Liu J., Perrier S. Chemical Review 2009, 109, 5402-5436. (作者按姓氏字母顺序排列。本人负责Bioconjugates 部分的编写) 1. Biomolecule-Polymer Conjugates (生物分子和高分子复合物) Introduction 胚胎干细胞对特定老鼠基因的改造和干扰 Introduction Why biomolecule-Polymer Conjugates? Biomolecule-polymer conjugate Attachment of polymer to biomolecules Improves their stability, solubility and biocompatibility. It also benefits for the biomolecule’s self-assembly, patterning and phase behavior. Maynard, H. D., Heredia K. L. Organic & Biomolecular Chemistry, 2007, 5 (1): 45-53 Medicine and biotechnology1 1. Vincent, M. J., Duncan, R, Trends in Biotechnology, 2005, 24, 39-47. Bio-separations2 Biosensors3 2. Roy, I., Gupta, M., N., Chemistry and Biology, 2003, 10, 1161-71. 3. Ghica, M. E., Brett, C. M. A., Electroanalysis, 2006, 18, 748-56. Diagnosis of diseases4 Drug delivery5 4. Duncan, R., Nature Reviews of Drug Discovery, 2003, 2, 347-60. 5. Kikuchi, A., Okano, T., Advanced Drug Delivery Review, 2002, 54, 53–77. “Graft to” “Graft from” In-situ grafting Initiator Introduction Methods to Prepare Biomolecule-Polymer Conjugates a) Post-polymerization Conjugation Polymer Biomolecule Biomolecule-polymer conjugate Drawbacks: Multiple steps Complicated purification process Unavoidable non-specific adsorption Multi-site attachment Low yield Introduction Methods to Prepare Biomolecule -polymer Conjugates b) In situ polymerization In situ polymerization Biomolecule Biomolecule -polymer conjugate Advantages Less steps Less-purification Easy to control High yield Introduction Reversible Addition Fragmentation Chain-Transfer (RAFT) Polymerisation a. Atom transfer radical polymerization (ATRP) Synthesize well-defined polymeric architectures with predictable MW and PDI Supply a good technique to prepare well-defined protein-polymer conjugate b. RAFT polymerization Polymerize more versatile monomers in more flexible reaction conditions for a wide range of polymeric architectures Get rid of the metal catalyst which might complex with some functional groups on proteins and damage the protein bioactivity. 2. In-situ Synthesis of Protein-polymer Conjugates -Initiated RAFT Polymerization BSA -S S S S C S BSA -S S S S C S BSA-Polymer Conjugate J. Liu, V. Bulmus, D. L. Herlambang, C. Barner-Kowollik, M. H. Stenzel, T. P. Davis, Angew. Chem. Int. Ed. 2007, 46, 3099-3103. S O C S O S O C C S S C S S HS N O H N BSA S BSA PEG-A/ irradiation H2O/DMF nS O O S + S (2) BSA (1) S 2-pyridinethione S O C C S BSA S O S (3) BSA-polymer conjugate O 8~9 3. Heterotelechelic Protein-Polymer-Biomolecule Conjugates O O N S O S S C S N C C S O S H2O / DMF S BDPET O O N S O S S C BSA S PEG-A C S C S O VA-044/250C S S O O N S O S S C n O S C S C SH S O S O Thiocholesterol or thiol terminated rhodamine B isothiocyanate SH = O n= 8~9 O O S S O S C n O S C S C O S S O O n= 8~9 Jingquan Liu, Huiyun Liu, Volga Bulmus, Lei Tao, Cyrille Boyer, Thomas P. Davis, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 1399-1405. (IF,3.821) . 2.1 Modification of Bifunctional RAFT Agent O C HO C S S C O O O O Cl SOCl2 OH S C C N C S Cl S HO S S O O N TEA CH3CN S O S S C C N C S S O S S a b c f N S S d O O e C a g O g S g C C S S O b c N f S e S d g g CDCl3 e f a 8.5 c,d b 7.5 6.5 5.5 4.5 ppm 3.5 2.5 1.5 0.5 2.2 Conjugation of Bifunctional RAFT Agent to Protein O O N S O S S C C N C S S O S S BSA SH O O N H2O / DMF S S O S C C S C S O BSA S S 1.0 BSA Modified TRITT BSA-TRITT conjugation mixture H N Absorption 0.6 6 BSA-TRITT BSA S 0.4 RID response 0.8 4 2 0.2 0 0.0 250 300 350 Wavelength/nm 400 450 15 16 17 18 Retention time/min 19 20 2.3 Characterization---- GPC analysis O O N S O S S C C n C S S O BSA S O S O O n= 8~9 100 61.7 3.5 61.6 3 60 2 40 1.5 61.4 Response Ln(M0/M t) 2.5 Conversion 4h polymerization 7h polymerization 10h polymerization 14h polymerization 23h polymerization 61.5 80 61.3 61.2 61.1 1 61.0 20 0.5 0 0 0 5 10 15 Polymerization time/ h 20 25 60.9 60.8 60.7 12 13 14 15 16 17 18 19 20 Retention time/ min 21 22 23 24 25 2.3 Characterization----Cleavage test O O N S O S S C n C S C SH O BSA O S HS O O 5 n= 8~9 4h polymerization 7h polymerization 10h polymerization 14h polymerization 23h polymerization 3 2.8 100000 MW/ gmol-1 Response 3 120000 2 1 2.6 2.4 80000 2.2 60000 2 1.8 40000 1.6 1.4 20000 1.2 0 0 0 20 40 60 Conversion/ % 26 28 30 32 34 36 38 Retention time/ min 40 42 44 80 1 100 PDI 4 2.4 Characterization----End group check O O N S S S C O n C C S S O BSA S O S O O n= 8~9 O O Glu SH Glu S S O S C n C C S O H N O 3.5 O 3.0 n= 8~9 BSA-polymer reacted with GSH BSA-polymer Absorbance 2.0 1.5 1.0 0.5 0.0 250 300 BSA S O S H2O 2.5 S 350 Wavelength/ nm 400 450 S 3. Summary Bifunctional TRITT was successfully modified with pyridyl disulfide groups on both sides The conjugation of bifunctional RAFT revealed that only one BSA was attached on RAFT In-situ polymerization lead to synthesis of bioconjugates with thiol reactive functional group in one step Sometimes research turned out to be much easier? 4. Conjugate of H2NO-KYNPKDKLLY with polymers as anthrax toxin inhibitor S O S O O Special sequence peptide O O O Anthrax receptor O Polymer chain O O O Anthrax N N O peptide O P E G This work was done with Prof Heather Maynard at University of California Los Angeles (UCLA) Jingquan Liu, Volga Bulmus, Thomas P. Davis, Ronald Li and Heather D Maynard, Macromolecules, 48, 8-14, 2013. (IF, 5.167) Tailoring the end groups and cleavage tests Cholesterol Attachment and cyclodextrIn Complex * Eki Setijadi, Lei Tao, Jingquan Liu , Cyrille Boyer, Zhongfan Jia and Thomas P. Davis, Biomacromolecules, 2009, 10 (9), pp 2699–2707. Manipulation of the Bioactivity of Glucose Oxidase via RAFT Controlled Surface Modification X. Luo, J. Liu*, G. Liu, R. Wang, Z. Liu,J. Polym. Sci. Part A Polym. Chem, 2012, 50, 14, 2786-2793 Micelles/Vesicles as drug carrier