Download Basic Concepts

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Operational Amplifiers (Op Amps)
Discussion D3.1
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Ideal Op Amp
i
i
1)
v
v
VDD
VSS  v0  VDD
+
vo
-
VSS
v0  Av  v  v 
The open-loop gain, Av, is very large, approaching infinity.
2)
i  i  0
The current into the inputs are zero.
Ideal Op Amp with Negative Feedback
v
+
v
-
vo
Network
Golden Rules of Op Amps:
1. The output attempts to do whatever is necessary to
make the voltage difference between the inputs zero.
2. The inputs draw no current.
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Non-inverting Amplifier
v
vi
v
R1
+
vo
Closed-loop voltage gain
AF 
-
vo
vi
R2
vi  v  v 
R1
vo
R1  R2
vo
R2
AF   1 
vi
R1
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Unity-Gain Buffer
vi
v
v
+
-
Closed-loop voltage gain
vo
AF 
vo
vi
vi  v  v  vo
AF 
vo
1
vi
Used as a "line driver" that transforms a high input impedance
(resistance) to a low output impedance. Can provide substantial
current gain.
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Inverting Amplifier
R2
Current into op amp is zero
v  v  0
v  0 vi
ii  i

R1
R1
0  v0 v0
ii 

R2
R2
vi
ii
ii
R1
v
v
+
vi v0

R1 R2
AF 
vo
R
 2
vi
R1
vo
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Differential Amplifier
R2
Current into op amp is zero
v1
v  v
i1 
v2
v1  v
R1
R1
v
v
+
R1
R2
v  v0
i1 
R2
R2
v 
v2
R1  R2
i1
i1
v1  v v  v0

R1
R2
v1 
R2
R2
v2
v2  v0
R1  R2
R1  R2

R1
R2
vo
Differential Amplifier
R2
R2
R2
v1 
v2
v2  v0
R1  R2
R  R2
 1
R1
R2
v1
v2
2
2
R2
R2
R
v0   v1 
v2 
v2
R1
R1  R2
R1  R1  R2 
R2
R2  R2 
v0   v1 
1   v2
R1
R1  R2  R1 
i1
R1
v
v
i1
+
R1
R2
R2
v0 
 v2  v1 
R1
vo
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Current-to-Voltage Converter
v
v
ii
+
vo
-
RF
if
ii  i f
v  v  0
0  v0  i f RF
v0  ii RF
Transresistance  v0 ii   RF
Photodiode Circuit
ii  25 A per milliwatt of incident radiation
v
v
h
ii
+
vo
-
At 50 mW
RF
if
ii  50  25 106  1.25mA
Assume RF  3.2k
v0  ii RF  1.25 103  3.2  103  4V
Operational Amplifiers (Op Amps)
•
•
•
•
•
•
•
Ideal Op Amp
Non-inverting Amplifier
Unity-Gain Buffer
Inverting Amplifier
Differential Amplifier
Current-to-Voltage Converter
Non-ideal Op Amp
Non-ideal Op Amp
•
•
•
•
•
•
•
•
•
•
Output voltage is limited by supply voltage(s)
Finite gain (~105)
Limited frequency response
Finite input resistance (not infinite)
Finite output resistance (not zero)
slew rate  dv0 (t ) dtMAX
Finite slew rate
Input bias currents
Input bias current offset
Input offset voltage
Finite common mode rejection ratio (CMRR)
Related documents