Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIERS .. .. . .. . LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO VCC+) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT PROTECTION HIGH INPUT IMPEDANCE J–FET INPUT STAGE INTERNAL FREQUENCY COMPENSATION LATCH UP FREE OPERATION HIGH SLEW RATE : 16V/µs (typ) N DIP8 (Plastic Package) D SO8 (Plastic Micropackage) DESCRIPTION ORDER CODES Part Number Temperature Package N D LF351 0 C, +70 C • • LF251 –40oC, +105oC • • LF151 –55 C, +125 C • • o o o o 151-01.TBL These circuits are high speed J–FET input single operationalamplifiers incorporatingwell matched,high voltage J–FET and bipolar transistors in a monolithic integrated circuit. The devicesfeaturehigh slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. PIN CONNECTIONS (top view) November 1995 1 8 2 7 3 6 4 5 1 2 3 4 5 6 7 8 - Offset Null 1 - Inverting input - Non-inverting input - VCC- Offset Null 2 - Output - VCC+ - N.C. 1/9 LF151 - LF251 - LF351 SCHEMATIC DIAGRAM V CC Non-inverting inpu t Inverting inpu t 100 Ω 200 Ω Output 100 Ω 30k 8.2k 1.3k 1.3k 35 k 35k 100 Ω Off set Null1 151-03.EPS V CC Offset Null2 INPUT OFFSET VOLTAGE NULL CIRCUITS LF351 N1 N2 151-04.EPS 100k Ω V CC ABSOLUTE MAXIMUM RATINGS Parameter Unit Supply Voltage - (note 1) ±18 V Vi Input Voltage - (note 3) ±15 V Vid Differential Input Voltage - (note 2) ±30 V Ptot Power Dissipation 680 mW VCC Output Short-circuit Duration - (note 4) Toper Operating Free Air Temperature Range Tstg Storage Temperature Range Notes : 2/9 Value Infinite LF351 LF251 LF151 0 to 70 –40 to 105 –55 to 125 o –65 to 150 o C C 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC+ and VCC–. 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the dissipation rating is not exceeded. 151-02.TBL Symbol LF151 - LF251 - LF351 ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = 25oC (unless otherwise specified) Vio DV io Iio Iib Avd SVR ICC LF151 - LF251 - LF351 Parameter Min. Max. Input Offset Voltage (R S = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 3 10 13 Input Offset Voltage Drift 10 Input Offset Current * Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. 5 100 4 pA nA Input Bias Current * o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 20 200 20 pA nA mV Large Signal Voltage Gain (RL = 2kΩ, VO = ±10V) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 50 25 200 Supply Voltage Rejection Ratio (R S = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 80 80 86 dB Supply Current (no load) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. mA 1.4 Input Common Mode Voltage Range ±11 +15 -12 CMR Common Mode Rejection Ratio (RS = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 70 70 86 Output Short-circuit Current o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 10 10 40 10 12 10 12 12 13.5 12 16 ±VOPP Output Voltage Swing Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. SR tr KOV GBP Ri THD en ∅m µV/oC V/mV Vicm Ios Unit Typ. 3.4 3.4 V dB mA 60 60 V RL RL RL RL = = = = 2kΩ 10kΩ 2kΩ 10kΩ Slew Rate (Vi = 10V, R L = 2kΩ, C L = 100pF, T amb = 25oC, unity gain) V/µs Rise Time o (Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain) 0.1 Overshoot o (Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain) 10 Gain Bandwidth Product o (f = 100kHz, Tamb = 25 C, V in = 10mV, RL = 2kΩ, CL = 100pF) Input Resistance Total Harmonic Distortion (f = 1kHz, AV = 20dB, R L = 2kΩ, o CL = 100pF, Tamb = 25 C, VO = 2VPP) µs % MHz 2.5 4 1012 Ω % 0.01 nV Equivalent Input Noise Voltage (f = 1kHz, Rs = 100Ω) 15 √ Hz Phase Margin 45 Degrees * The input bias currents are junction leakage currents which approximately double for every 10oC increase in the junction temperature. 3/9 151-03.TBL Symbol LF151 - LF251 - LF351 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY R L = 2 kΩ T a m b = +25 °C S ee Figure 2 15V 25 20 V CC = 10V 15 V CC = 5V 5 0 100 1K 10K 100K 1M 10M Tamb = +25 C VCC = 15V R L = 2kΩ S ee Figure 2 20 15 Ta mb = -55 C 10 5 Ta mb = +125 C 0 10k 40k 100k 400k 1M 4M 10M FREQUENCY (Hz) 4/9 15 10 V CC = 5V 5 0 100 1K 10K 100K 1M 10M 30 25 20 R L = 1 0 kΩ 15 R L = 2 kΩ 10 5 VC C = 15V Se e F i gu re 2 0 - 75 - 50 - 25 0 25 50 75 - 50 1 25 T E MP ER AT U R E ( ° C ) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE 30 30 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) V CC = 15V Tamb = +25°C See Figure 2 20 15 10 5 0 0.1 0.2 0.4 0.7 1 2 4 LOAD RESISTANCE (k Ω) 7 10 151-09.EPS MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE(V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE 25 V CC = 10V FREQUENC Y (Hz) 30 25 20 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP. 151-07.EPS MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY R L= 10kΩ Ta mb = +25 C S e e Figure 2 V CC = 15V 151-05.EPS FREQUENCY (Hz) 25 25 R L = 10 k Ω Tamb = +25°C 20 15 10 5 0 2 4 6 8 10 SUPPLY VOLTAGE (V) 12 14 16 151-10.EPS 10 30 151-08.EPS V CC = MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE (V) 30 151-06.EPS MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY LF151 - LF251 - LF351 INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE 100 1000 15V 400 200 100 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 10 1 0.1 20 V CC = 10 VO = 4 R 2 L 15V 10V = 2k Ω 1 -25 0 25 50 75 100 -75 125 -50 -25 151-11.EPS 0.01 -50 40 TEMPERATURE (°C) LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY 0 25 50 75 100 125 151-12.EPS INPUT BIAS CURRENT (nA) V CC = TEMPERATURE (°C) TOTAL POWER DISSIPATION VERSUS FREE AIR TEMPERATURE 180 DIFFERENTIAL VOLTAGE AMPLIFICATION (le fts ca le) P HASE SHIFT (right sca le) 10 90 R L = 2kΩ C L = 100pF V CC = 15V T a mb = +125 C 1 100 1K 10K 0 100K 1M 10M No signal No load 175 15V 150 125 100 75 50 25 0 -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE 2.0 2.0 15V V CC = 1.8 1.6 SUPPLY CURRENT (mA) No signal No load 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 1.8 T a m b = +2 5°C 1.6 No si gn al No loa d 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 TEMPERATURE (°C) 75 100 125 0 2 4 6 8 10 12 14 16 151-16.EPS -75 151-15.EPS SUPPLY CURRENT (mA) V CC = 200 151-13.EPS FREQUENCY (Hz) 225 151-14.EPS 100 TOTAL POWER DISSIPATION (mW) DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 250 SUPPLY VOLTAGE (V) 5/9 LF151 - LF251 - LF351 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE INPUT AND OUTPUT VOLTAGES (V) R L = 1 0 kΩ 88 VC C = 15V 87 86 85 84 83 -75 -50 -25 0 25 50 75 100 125 4 OUTPUT VOLTAGE VERSUS ELAPSED TIME INPUT 2 0 VCC = 15V R L = 2 kΩ C L= 100pF Ta mb = +25 C -2 -4 -6 0 0.5 1 2 2.5 3 3.5 EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY 70 24 EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) 90% 16 12 8 V 4 0 tr 0.1 CC = 15V R L = 2k Ω Tamb = +25°C 10% 0 VCC = 60 OVERSHOOT 20 -4 15V A V = 10 R S = 100 Ω T amb = +25°C 50 40 30 20 10 0 0.2 0.3 0.4 0.5 0.6 10 0.7 40 100 400 TOTAL HARMONIC DISTORTION VERSUS FREQUENCY V VCC = = 15V 15V CC 11 AA V V= = VV 6V6V O (rms) = = O (rms) 0.1 0.04 T amb +25°C T amb= =+25°C 0.01 0.004 0.001 100 400 1k 4k 10k FREQUENCY (Hz) 40k 100k 151-21.EPS TOTAL HARMONIC DISTORTION (%) 1 0.4 1k 4k FREQUENCY (Hz) 151-19.EPS TIME (µs) 6/9 1.5 TIME (µs ) 28 OUTPUT VOLTAGE (mV) OUTP UT 151-17.EPS TEMPERATURE (°C) 6 10k 40k 100k 151-20.EPS COMMON MODE MODE REJECTION RATIO (dB) 89 151-18.EPS COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE LF151 - LF251 - LF351 PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 10k Ω 1k Ω - - eI eo LF351 RL = 2kΩ RL CL = 100pF 151-23.EPS CL = 100pF 151-22.EPS eI eo LF351 TYPICAL APPLICATIONS (0.5Hz) SQUARE WAVE OSCILLATOR R F = 1 0 0k 3.3 k Ω Ω +15V L F3 51 1k Ω C = 3.3 F -15V µF 3.3k Ω 9.1k 1 2 xR F 151-24.EPS f osc= Ω CF HIGH Q NOTCH FILTER LF351 R1 R2 fo = 1 = 1kHz 2 x R1 C1 C3 R3 C1 = C2 = C3 = 100pF 2 C1 151-25.EPS R1 = R2 = 2R3 = 1.5M Ω C2 7/9 LF151 - LF251 - LF351 PM-DIP8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP A a1 B b b1 D E e e3 e4 F i L Z 8/9 Min. Millimeters Typ. 3.32 0.51 1.15 0.356 0.204 Max. 1.65 0.55 0.304 10.92 9.75 7.95 Min. 0.020 0.045 0.014 0.008 Max. 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Inches Typ. 0.131 0.100 0.300 0.300 6.6 5.08 3.81 1.52 0.125 0260 0.200 0.150 0.060 DIP8.TBL Dimensions LF151 - LF251 - LF351 PM-SO8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 a3 b b1 C c1 D E e e3 F L M S Min. Millimeters Typ. 0.1 0.65 0.35 0.19 0.25 Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 Min. Inches Typ. 0.026 0.014 0.007 0.010 Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 o 45 (typ.) 4.8 5.8 5.0 6.2 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 SO8.TBL Dimensions o 8 (max.) Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publ ication are subject to change without notice. This pub lication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. ORDER CODE : 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 9/9