Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Signals and Systems Lecture 3: Sinusoids Today's lecture − Sinusoidal signals − Review of the Sine and Cosine Functions Examples − Basic Trigonometric Identities − Relation of Frequency to Period − Phase Shift to Time Shift Example Sampling and Plotting Sinusoids − Complex Exponentials and Phasors − Complex Number Representation − Addition of Complex Numbers Mathematical Addition Graphical Addition 2 3 Fig. 2-6: x(t) = 20cos(2π(40)t - 0.4π) 4 Sinusoidal signal : x(t) = 10cos(2π(440)t - 0.4π) 5 MATLAB Demo of Tuning Fork − % TuningFork − t = 0:.0001:.01; − y = 10*cos(2*pi*440*t-0.4*pi); − plot(t,y) − grid − pause; − t = 0:.0001:1; − y = 10*cos(2*pi*440*t-0.4*pi); − sound (y) 6 Basic Properties of sine and cosine functions Equivalence Periodicity Evenness of cosine Oddness of sine sin = cos( - /2) or cos = sin( +/2)y cos( + 2 k) = cos , k = integer cos(-) = cos sin(-) = - sin Zeros of sine sin (k) = 0, k = integer Ones of cosine cos (2k) = 1, k = integer Minus ones of cosine cos [2(k + ½)) = -1, k = integer 7 Some basic trigonometric identities Number Equation 1 sin2 + cos2 = 1 2 cos2 = cos2 - sin2 3 sin2 = 2 sin cos 4 sin (α + β) = sinα cosβ + cosα sinβ 5 cos (α + β) = cosα cosβ + sinα sinβ 8 Relation of Frequency to Period X(t)=A cos(0t+ ) x(t + T0) = x(t) A cos(0 (t + T0) + )= A cos(0t+ ) cos(0 t + 0 T0 + )= cos(0t+ ) Since cosine function has a period of 2π 0 T0 = 2π 2πf0 T0 = 2π T0 = 1/ f0 9 Fig 2-7: x(t) = 5cos(2πfot) for different values of fo 10 Phase Shift and Time Shift x0 (t - t1) = A cos(0 (t - t1) = A cos (0t + ) cos(0 t -0 t1 )= cos(0t + ) t1 = -/ 0 = -/ 2πf0 Phase Shift is negative when time-shift is positive = - 2πf0 t1 = - 2πt1 /T0 11 Phase Shift and Time Shift 12 Phase Shift is Ambiguous 13 − X(t) =Acos(wt +Φ) 14 Sinusoid from a Plot 15 Represent following graph in form of X(t) =Acos(wt +Φ) 16 − A=6 − T =6 − f=1/6 − tm=2; − Φ=-wtm − Φ=-2*pi*f*tm − -2pi/3; − X(t)=6cos(pi/3 -2pi/3) 17 Sampling and Plotting Sinusoids 18 Effect of Sampling Period 19 Sample Spacing 20 Complex Numbers 21 Plot Complex Numbers 22 Complex Addition = Vector Addition 23 Polar Form 24 Polar versus Rectangular 25 Practice 26 Solution 27 Complex Conjugation 28