Download View File - UET Taxila

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Signals and Systems
Lecture 3:
Sinusoids
Today's lecture
− Sinusoidal signals
− Review of the Sine and Cosine Functions
 Examples
− Basic Trigonometric Identities
− Relation of Frequency to Period
− Phase Shift to Time Shift
 Example
Sampling and Plotting Sinusoids
− Complex Exponentials and Phasors
− Complex Number Representation
− Addition of Complex Numbers
 Mathematical Addition
 Graphical Addition
2
3
Fig. 2-6: x(t) = 20cos(2π(40)t - 0.4π)
4
Sinusoidal signal : x(t) = 10cos(2π(440)t - 0.4π)
5
MATLAB Demo of Tuning Fork
− % TuningFork
− t = 0:.0001:.01;
− y = 10*cos(2*pi*440*t-0.4*pi);
− plot(t,y)
− grid
− pause;
− t = 0:.0001:1;
− y = 10*cos(2*pi*440*t-0.4*pi);
− sound (y)
6
Basic Properties of sine and cosine functions
Equivalence
Periodicity
Evenness of
cosine
Oddness of sine
sin = cos( - /2)
or
cos = sin( +/2)y
cos( + 2 k) = cos , k =
integer
cos(-) = cos 
sin(-) = - sin
Zeros of sine
sin (k) = 0, k = integer
Ones of cosine
cos (2k) = 1, k = integer
Minus ones of
cosine
cos [2(k + ½)) = -1, k = integer
7
Some basic trigonometric identities
Number
Equation
1
sin2 + cos2  = 1
2
cos2 = cos2  - sin2
3
sin2 = 2 sin  cos 
4
sin (α + β) = sinα cosβ + cosα sinβ
5
cos (α + β) = cosα cosβ + sinα sinβ
8
Relation of Frequency to Period
X(t)=A cos(0t+ )
x(t + T0) = x(t)
A cos(0 (t + T0) +  )= A cos(0t+ )
cos(0 t + 0 T0 +  )= cos(0t+ )
Since cosine function has a period of 2π
0 T0 = 2π
2πf0 T0 = 2π
T0 = 1/ f0
9
Fig 2-7: x(t) = 5cos(2πfot) for different values of fo
10
Phase Shift and Time Shift
x0 (t - t1) = A cos(0 (t - t1) = A cos (0t + )
cos(0 t -0 t1 )= cos(0t + )
t1 = -/ 0 = -/ 2πf0
Phase Shift is negative when time-shift is
positive
 = - 2πf0 t1 = - 2πt1 /T0
11
Phase Shift and Time Shift
12
Phase Shift is Ambiguous
13

− X(t) =Acos(wt +Φ)
14
Sinusoid from a Plot
15
Represent following graph in form of
X(t) =Acos(wt +Φ)
16
− A=6
− T =6
− f=1/6
− tm=2;
− Φ=-wtm
− Φ=-2*pi*f*tm
− -2pi/3;
− X(t)=6cos(pi/3 -2pi/3)
17
Sampling and Plotting Sinusoids
18
Effect of Sampling Period
19
Sample Spacing
20
Complex Numbers
21
Plot Complex Numbers
22
Complex Addition = Vector Addition
23
Polar Form
24
Polar versus Rectangular
25
Practice
26
Solution
27
Complex Conjugation
28
Related documents