Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Stats 1 Formula
Measure of location: π₯Μ
vs ο
Sample
π₯Μ
=
π₯Μ
=
π₯Μ
=
Population
β π₯π
π
π=
β π₯π ππ
β ππ
π=
β(π₯π β π)
+π
π
π=
β π₯π
π
β π₯π ππ
β ππ
β(π₯π β π)
+π
π
Measure of spread:
Sample
π 2 =
Population
1
β(π₯ β π₯Μ
)2
πβ1
π2 =
(β π₯)2
1
2
π =
{β π₯ β
}
πβ1
π
2
π 2 =
π2 =
(β ππ₯)2
1
{β ππ₯ 2 β
}
πβ1
π
SD ο½ ο³ ο½ var
1
β(π₯ β π₯Μ
)2
π
1
(β π₯ 2 ) β π 2
π
(β ππ₯)
1
π = (β ππ₯ 2 ) β {
}
π
π
2
2
ο
var ο½ ο³ 2
1 standard deviation includes 2/3 of data
2 standard deviations include 95% of data
3 standard deviations include βalmost allβ data
βa quantity expressing by how much the members of a group differ from the
mean value for the groupβ
Probability
Mutually Exclusive
Non-Mutually Exclusive
π(π΄ βͺ π΅) = π(π΄) + π(π΅)
π(π΄ β© π΅) = π(π΄) × π(π΅)
π(π΄ βͺ π΅) = π(π΄) + π(π΅) β π(π΄ β© π΅)
π(π΄ β© π΅) = π(π΄ | π΅) × π(π΅)
ο
π(π΄ β© π΅)
π(π΄ | π΅) =
π(π΅)
π(π΄ β© π΅ β© πΆ) = π(π΄) × π(π΅) × π(πΆ)
Exclusive β no overlap of possible events
Exhaustive β all possible events are accounted for
If any of the following are true then they are all true & events are independent:
π(π΄ | π΅) = π(π΄ | π΅β²)
π(π΅| π΄) = π(π΅ | π΄β²)
π(π΄ | π΅) = π(π΄)
π(π΅ | π΄) = π(π΅)
π(π΄ | π΅β²) = π(π΄)
π(π΅ | π΄β²) = π(π΅)
π(π΄ β© π΅) = π(π΄) × π(π΅)
Binomial distribution (a discrete distribution):
X ~ B ( n, p )
P( X ο½ x)ο½ n C x p x q n ο x
Expectation & Variance of Binomial distribution:
X ~ B ( n, p )
E ( x) ο½ ο ο½ np
Var( x) ο½ ο³ 2 ο½ npq
Normal distribution (a continuous distribution):
π~π(π, π 2 )
The standard normal distribution: π~π(0 , 1)
Conversion: π =
πβπ
π
To find ο and/or ο³ using given probabilities:
1. Draw a sketch or curve
2. Use the probabilities table to find corresponding z value
3. Use the z value together with the conversion to find ο and/or ο³. Finding both
ο and ο³ will involve solving simultaneous equations.
Estimation
Sample mean = π₯Μ
Sample variance = π 2
Unbiased estimator of
population mean = πΜ
Unbiased estimator of
population variance = πΜ
(ie the distribution of many sample means)
(ie the distribution of many sample variances)
πΜ
~π (π,
π2
)
π
πΜ
=
πΜ
β π
π ~π(0,1)
βπ
Confidence Interval
90%
95%
98%
99%
99.8%
z
1.6449
1.9600
2.3263
2.5758
3.0902
π₯Μ
± "z"
π
βπ
Product Moment Correlation Coefficient:
rο½
S xy
S xx S yy
S xy ο½ ο₯ xi y i ο
S xx ο½ ο₯ xi ο
2
1
ο¨ο₯ xi ο©2
n
1
ο₯ xi ο₯ y i
n
S yy ο½ ο₯ y i ο
2
1
ο¨ο₯ yi ο©2
n
Regression:
y on x
x on y
y ο½ a ο« bx
x ο½ a 'ο«b' y
a ο½ y ο bx
a ' ο½ x ο b' y
S xy
b' ο½
S yy
bο½
S xy
S xx