Download STAT 141 Formula Sheet Range = Max − Min IQR = Q 3 − Q1 Outlier

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
STAT 141 Formula Sheet
Range = M ax − M in
1
IQR = Q3 − Q1
y < Q1 − 1.5 × IQR or y > Q3 + 1.5 × IQR
qP
P
(y−ȳ)2
y
Sample mean and standard deviation: ȳ = n and s =
n−1
Outlier Rule-of-Thumb:
z-scores: z =
y−µ
σ
Correlation: r =
(model based) and z =
y−ȳ
s
(data based)
P
zx zy
n−1
Least-squares regression line: ŷ = b0 + b1 x where
s
b1 = r sxy and b0 = ȳ − b1 x̄
P (A) = 1 − P (Ac )
P (A or B) = P (A) + P (B) − P (A and B)
P (A and B) = P (A) × P (B | A)
P (B | A) =
P (A and B)
P (A)
If A and B are independent, then P (B | A) = P (B)
P
P
E(X) = µ = x P (x)
V ar(X) = σ 2 = (x − µ)2 P (x)
E(X ± c) = E(X) ± c
V ar(X ± c) = V ar(X)
E(aX) = aE(X)
V ar(aX) = a2 V ar(X)
E(X ± Y ) = E(X) ± E(Y )
If X and Y are independent, then V ar(X ± Y ) = V ar(X) + V ar(y)
q
1
x−1
Geometric model: P (x) = q p
µ = p σ = pq2
Binomial model: P (x) = n Cx px q n−x
Sample proportion: µ(p̂) = p SD(p̂) =
Sample mean: µ(ȳ) = µy SD(ȳ) =
µ = np
p pq
σ=
√
npq
n
√σ
n
Central Limit Theorem: As n grows, the sampling distributions of p̂ and ȳ
approach Normal models with mean and standard deviation given above.
STAT 141 Formula Sheet
2
Inference:
Confidence interval for parameter: statistic ± (critical value) × SE(statistic)
Test statistic =
statistic−parameter
SD(statistic)
Parameter
Statistic
p
p̂
p̂1 − p̂2
µ
ȳ
ȳ1 − ȳ2
µd
d¯
qP
β1
µν
yν
p̂q̂
n
q
p1 q 1
n1
+
q
p2 q 2
n2
p̂1 q̂1
n1
√σ
n
µ1 − µ2
se =
SE(statistic)
q
n
p1 − p2
σ
SD(statistic)
p pq
q
σ12
n1
+
+
p̂2 q̂2
n2
√s
n
q
σ22
n2
s21
n1
+
s22
n2
sd
√
n
σd
√
n
(y−ŷ)2
n−2
√se
sx n−1
b1
ŷν = µ̂ν
ŷν
q
SE 2 (b1 ) · (xν − x̄)2 +
q
SE 2 (b1 ) · (xν − x̄)2 +
For testing H0 : p1 − p2 = 0, substitute the pooled estimate p̂pooled =
for p̂1 and p̂2 in the SE formula.
P (Obs−Exp)2
Chi-square statistic: χ2 =
.
Exp
s2e
n
s2e
n
+ s2e
y1 +y2
n1 +n2
Related documents