Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
10 電磁 III
How is an aurora so thin yet
so tall and wide?
Sections
1. 磁場
2. 電流與磁場
10-1 磁場
The electric field
and the magnetic
field
Electromagnets
and permanent
magnets
10-1.1 The definition of B

 
FB  qv  B

 F
E  (N/C) (V  m)
q0
The tracks in a bubble
chamber
The SI unit for B
1 tesla = 1T =1 N/A‧m=104 gauss
108 T
1.5 T
10-2 T
10-4 T
10-10 T
10-14 T
Magnetic Field Lines

Magnetic vs. electric dipoles
A horseshoe and a Cshaped magnets
例 1 A 5.3 MeV proton
v
B = 1.2 mT
2 K / m  3.2  10 m/s
7
FB  qvB sin   6.1  10
15
a  FB / m  3.7  10 m/s
12
N
10-1.2 Crossed Fields: Discovery
of the Electron
A
cathode ray tube
 Thomson’s procedure:
 設定E = 0, B = 0, 並記錄光點位置
 開啟電場
 開啟磁場,並調至與電場相等
Calculation
2
qEL
y
, qE  qvB
2
2mv
2 2
m B L
v  E/B, 
q
2 yE
the charge-to-mass ratio of the electron
1.75881961011 C·kg-1
F QE
ay 

m
m
1
2
y  a y t , L  vxt
2
QEL2
y
2mvx2
10-1.3 Crossed Fields: The
Hall Effect
 By
the conduction electrons in copper:
V  Ed
eE  evd B
J
i
vd 

ne neA
Bi
A
n
(l  )
Vle
d
例 2 A cube generator
d = 1.5 cm, v = 4.0m/s, B = 0.05T
eE  evB
V  Ed
V  dvB
V  3.0mV
10-1.4 A Circulating Charged
Particle
F  ma  mv / r
2
qvB  mv / r
2
r  mv / qB
T  2r / v
 2m / qB
頻率與軌跡
The frequency and angular frequency
1
qB
qB
f  
  2f 
T
2m
m
The magnetic bottle machine
Helical Paths
V∥ and V⊥
v11  v cos  v  v sin 
The pitch (螺距) of the helical path
2m
p  v11T  v cos 
qB
極光橢圓圈
例 3 The Mass Spectrometer
(質譜儀)
1
2
mv  qV
2
v  2qV / m
mv 1

r
qB B
x  2r
2mV
q
質譜儀
x = 1.6254m, V = 1000.0V, B = 80.000mT
2
x  2r 
B
2
2mV
q
2
B qx
m
 203.93u
8V
Isotope Separation
Centrifuge and diffusion chamber
10-1.5 Cyclotrons and
Synchrotrons
(迴旋加速器與同步加速器)
Fermilab: 6.3km ring
Synchrotrons
 The
f  f osc
resonance condition:
 When proton energy > 50Mev:
 Out of resonance (relativistic effect)
 A huge magnet (4×106 m2) is needed for
high energy (500Gev) protons
 The proton sychrotron at Fermilab can
produces 1Tev proton
CERN LHC
The LHC is 27km long and sits 100m below the surface.
10-1.6 Magnetic Force on a
Current-Carrying Wire
Magnetic Force
q  it  iL / vd
FB  qvd B sin   iLB

 
FB  iL  B
For a wire segment:



dFB  idL  B
例 4 A length of wire with a
semicircular arc
Calculation
F1  F3  iLB
dF  iBdL  iB ( Rd  )
F2 


0

dF sin   iBR  sin d
 iBR cos 
0

0
 2iBR
F  F1  F2  F3  2iB ( L  R )
線圈
10-1.7 Torque on A Current
Loop
 F2
and F4 cancel
 F1 and F3 form a force couple
F2  ibB sin( 90   )  ibB cos 

b
b
   (iaB sin  )  (iaB sin  )
2
2
 iabB sin 
  N   ( NiA) B sin 
例 5 A galvanometer for analog
meters
  NiAB sin   
NiAB sin 


 [( 250)(100  10-6 A )( 2.52  10-4 m 2 )
 (0.23T )(sin 90 )] / 28
 5.2  108 M  m / degree
10-1.8 The Magnetic Dipole
 The
magnetic dipole moments
  NiA    B sin 

 
  
     B (cf :   p  E )
 The magnetic potential energy
 
 
U ( )   p  E  U ( )     B
磁能
U  (  B )  (  B )
 2 B
10-2 Magnetic Fields due
to Currents
Conventional rocket
EM Rail Gun
10-2.1 Calculating the Magnetic
Field due to a current
dE 

dE 
1
4 e
0
1
4 e
0
dq
2
r
dq 
3 r
r
 0 ids sin 
dB 
4
r2
 0 id s  r
dB 
4
r3
The law of Biot and Savart
Magnetic Field Due to a Current in a
Long Straight Wire
 0  4 10 7 T  m/A permeabili ty
0 ids sin 
dB 
2
4
r
B


dB

2
dB



 0i

2
0


0
sin ds
2
r
Integration
r
s  R , sin  =
2
R
2
s R
2
2
Rds
 0i 
B
2 3/ 2
2

0
(s  R )
2
0i
s
 0i

] 
[ 2
=
2 1/ 2 0
2R
2R ( s  R )
Magnetic Field Due to a Current in a
Circular Arc of Wire
0 ids sin 90 
0 ids
dB 
=
2
4
R
4 R 2
 
0 iRd 
B   dB  
0 4
R2
 0i 
0i
=
d 

4R 0
4R
例 6 What B does the current
produce?
 
ds  r  0
B1  B2  0
 0i ( / 2)  0i
B3 
=
4R
8R
10-2.2 Two Parallel Currents
0ia
Ba 
2d

 
Fba  ib L  Ba
0 Liaib
Fba  ib LBa sin 90 
2d

例 7 The Field Between Two wires
B ( x)  Ba ( x)  Bb ( x)
=
 0i
2 ( d  x)

 0i
2 ( d  x)

 0id
2 ( d 2  x 2 )
10-2.3 Ampere’s Law
Comparing
Gauss’ lawand Ampere’s law

Ampere’s law
 B  ds 0ienc
The Magnetic Field Outside a Long
Straight Wire with Current
 
 B  ds  B cos ds
 B  ds  B(2r )
B(2r )  0i
The Magnetic Field Inside a Long
Straight Wire with Current
 
 B  ds  B (2r )
ienc
r 2
i
R 2
r 2
B ( 2r )   0i
R 2
例 7 A hollow conducting cylinder
r
ienc   JdA   cr ( 2rdr )
2
a

c( r  a )
4
4
2
B( 2r )  
c( r  a )
4
2
4
10-2.4 Solenoids and Toroids
Magnetic
Field of a Solenoid (螺線管)
Magnetic Field of a Toroid (螺線環)
Magnetic Field of a Solenoid
 
b 
 c 
 B  ds  a B  ds  b B  ds
d 
 a 
  B  ds   B  ds
c
Bh  0inh
d
B  0in
Magnetic Field of a Toroid
0iN
B(2r )   0iN B 
2r
磁圍阻核融合反應器
Tokamak Fusion Test Reactor
10-2.5 A Current Carrying Coil as
a Magnetic Dipole
A
current loop and a bar magnet
Magnetic Field of a Coil
B
 dB cos 
 0ids R

4r 2 r
 0iR

2R
2
2 3/ 2
4 ( R  z )
 0iR 2

2( R 2  z 2 ) 3 / 2
 0i

(at center of coil)
2R
Coulomb’s Law
•Using Gauss’s law to
take advantage of
special symmetry
situations
•Gaussian surfaces
•高斯面上各點電場與
面內總電荷相關
Gauss’ Law
•Flux  enclosed
charge
e 0
 
 e 0  E  dA
 qenc
Gauss’Law and Coulomb’Law
•From G.L. to C.L.


e 0  E  dA  e 0  EdA  q
e 0 E  dA  q
e 0 E ( 4r )  q
2
1
q
E
2
4e0 r
敬請期待
電磁 IV
Related documents