Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Johann Wolfgang Goethe-Universität Frankfurt Institut für Theoretische Physik Space time evolution of QCD matter I. Bouras, A. El, O. Fochler, F. Reining, Z. Xu, CG Focus week, HIC at the LHC, CERN , may 2007 • Parton cascade with stochastic algorithm • Transport rates and momentum isotropization • Thermalization of gluons due to • Results: bottom-up scenario, jet-quenching, elliptic flow, viscosity,… viscous hydro, … Relativistic Quantum Transport for URHIC RHIC, LHC • microscopic transport calculations of partonic degrees of freedom p f ( x, p) Cgg gg ( x, p) Cgg ggg ( x, p) new development Boltzmann Approach of MultiParton Scatterings (BAMPS) 2 9g 4 s2 12 g 2 q2 M gg ggg 2 2 2 2 2 2 2 ( q mD ) k ( k q ) mD Dt D3 x Dt for 2 3 P23 vrel 23 3 Dx I 32 Dt for 3 2 P32 8 E1 E2 E3 (D3 x) 2 LPM Z. Xu and C. Greiner, PRC 71, 064901 (2005) for 2 2 P22 vrel 22 D3x particle in cell method collision probability parton scatterings in leading order pQCD M gg gg M gg ggg s2 9g 4 , 2 2 2 2 ( q mD ) 2 2 9g 4 12 g 2 q2 s2 2 2 2 2 2 2 ) m q ( 2 m ) q k ( k D D LPM J.F.Gunion, G.F.Bertsch, Phys. Rev. D 25, 746(1982) s (332n screening mass: 12 f ) ln(s / QCD ) m 16s ( 2 )3 1p (3 f g n f f q ), 2 D d3p LPM suppression: the formation time D 1 k cosh y g (k g cosh y ) Example s ~ 0.3 g ~ 0.5 fm T ~ 400MeV fugacity ~ 0.5 Important scales for kinetic transport & simulations Simulations solve Boltzmann equation: → test particles and other schemes Semiclassical kinetic theory: (Quantum mechanics: ) Initial production of partons minijets d jet abcd d 2 2 K x f ( x , p ) x f ( x , p 1 a 1 t 2 b 2 t ) 2 dt a ,b;c ,d dpt dy1dy2 CGC string matter fast isotropization and thermalisation elliptic flow in noncentral Au+Au collisions at RHIC: Z. Xu and C. Greiner, hep-ph/0703233 Z. Xu and C. Greiner, NPA 774, 787 (2006) pZ2 t t0 pZ2 pZ2 pZ2 ( t ) ( t ) exp eq 0 eq 2 2 2 2 E E E E ( t ) central hydrodynamical evolution of momentum spectrum, … micr. determination of transport parameter … 3+1dim. full cascade: comparison with RHIC data tr . R22 tr . R23 Z. Xu and C. Greiner, arXiv:hep-ph/0703233 tr . R32 tr . Rdrift The drift term is large. tr . tr . R23 R32 5 tr . R22 1 n 5 3 2 1 d p E ( v z)f 3 3 2 1 d p ( v z)f 3 1 tr R ggggg interactions are essential for kinetic equilibration! transverse energy at y=0 in Au+Au central collision Initial condition with Color Glass Condensate : [-0.05:0.05] and xt < 1.5 fm bottom-up scenario of thermalization R.Baier, A.H.Mueller, D.Schiff and D.T.Son, PLB502(2001)51 • Qs-1 << t << -3/2 Qs-1 Hard gluons with momenta about Qs are freed and phase space occupation becomes of order 1. • -3/2 Qs-1 << t << -5/2 Qs-1 (h+h h+h+s) Hard gluons still outnumber soft ones, but soft gluons give most of the Debye screening. • -5/2 Qs-1 << t << -13/5 Qs-1 (h+h h+h+s; s+s s+s; h+s sh+sh+s) Soft gluons strongly outnumber hard gluons. Hard gluons loose their entire energy to the thermal bath. • After -13/5 Qs-1 the system is thermalized: T ~ t-1/3, T0 ~ 2/5 Qs Not the full Bottom-Up story... evolution of particle number in bottom-up scenario in 1+1 dim. geometry LHC … RHIC → Particle number decreases in the very first moment → No net soft gluon production at early times! Evolution of temperature and spectrum … Andrej El extracting the viscosity preliminary Bjorken geometry: Jet-Quenching in a central Au Au collision at RHIC Oliver Fochler preliminary new: RAA higher? old: RAA ~ 0.04–0.05 quarks not yet included … Summary • A new parton cascade including inelastic multiparton scatterings gg↔ggg • Explains thermalization and hydrodynamical expansion at RHIC • PQCD inspired gg↔ggg are important for the thermalization. • PQCD gg↔ggg generate the elliptic flow in noncentral collisions. • Not full bottom-up thermalization scenario with CGC • 3~4 too much jet-quenching Outlook • viscosity • including quarks, heavy quark production • Test for initial conditions (boundaries) possible Chromo/Weibel instabilities B.Schenke, A. Dumitru, Y. Nara, M. Strickland Initial conditions: minijets production with pt > p0 abcd d jet d 2 2 K x f ( x , p ) x f ( x , p ) 1 a 1 T 2 b 2 T 2 dpT dy1dy2 dtˆ a ,b ;c ,d binary approximation N g 830 AA pp N jet 2 TAA (b 0) jet for a central Au+Au collision at RHIC at 200 AGeV using p0=2 GeV Results rapidity distribution the central region: : [-0.5:0.5] and xt < 1.5 fm including ggggg thermalization and hydrodynamical behavior without ggggg NO thermalization and free streaming Why fast thermalization? … transport rates ! gg gg transport cross section: t d sin 2 cm gg ggg gg ggg 2 gg gg BUT! This is not the whole story... Q PZ2 / E 2 , Q d3p ( 2 ) 3 d3p ( 2 ) 3 1 d3p Q (t ) ( 2 )3 n pZ2 pZ2 pZ2 pZ2 t t0 2 (t ) 2 eq 2 (t0 ) 2 eq exp E E E E f t f ( p , x, t ) Q f ( p , x, t ) 1 d3p Q Q (t ) ( 2 )3 n f t f P f I 22 I 23 I 32 t E Q (t ) Cdrift C22 C23 C32 (t) gives the timescale of kinetic equilibration. 1 Q (t ) tr . tr. tr . tr . Rdrift R22 R23 R32 , Qeq Q (t ) f ( x, p) ( pZ E) ( pZ E) special case 3 tr . R n vrel 22 , 2 tr . 22 33 tr . R n vrel 23 22 tr . 23 t d sin 2 cm for isotropic distribution of collision angle R R22 , tr . 22 3 R R23 , 2 tr . 23 2 R R32 3 tr . 32 momentum isotropization and kinetic equilibration Initial condition: Minijets p0=1.4 GeV Important scales for kinetic transport & simulations Simulations solve Boltzmann equation: → test particles and other schemes Semiclassical kinetic theory: (Quantum mechanics: ) E mfp d ... kinetic transport still valid Thermalization times: comparison with bottom-up prediction • 1/Qs behavior seems to be correct. • instead -13/5 behavior but -x with x < 13/5 Jet-Quenching Box calculation: T=400MeV dominant process is 2->3 Oliver Fochler Bremsstrahlung processes M gg ggg 2 9g 4 s2 12 g 2 q2 2 2 2 2 2 2 2 ( q m ) k ( k q ) m D D LPM suppression: the formation time D LPM (k g cosh y ) varying the cut-off for kT: 1 k LPM cosh y g Bethe-Heitler regime LPM (k g A cosh y )