Download Deductive Proof - Egyptian Language School

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Mathematics Department
Stage : 1st Prep
Date
: / /
2nd Term
Exercises on
Deductive Proof
Remarks:
Theorem (1):
If two straight lines intersect, then each two vertically
opposite angles are
equal in measure.
Theorem (2):
The sum of the measure of accumulative angles at a point
is equal to 360°.
Theorem (3):
The sum of the measure of interior angles of a triangle is
180°.
[1] Complete:
1] The sum of the measures of the interior angle of a triangle
= …180…..°
2] The sum of the measure of accumulative angles at a point is
……360°…….
[2] Choose the correct answer:
1] If two adjacent angles are complementary, then their outer
sides are…….
i) perpendicular
ii) intersection
iii) equal
iv) parallel
2] If the measures of two angles of a triangle are 55 and
45, then the triangle is ………..
i) right – angled
ii) acute – angled
iii) obtuse- angled
iv) equilateral
[3] In the opposite figure:
C
mAMB = 50°, mEMD = 80°, MC
bisects BMD and mCMD = 65°.
find: m (AME)
D
B
65°● ● 50°
80° M
Given: mAMB = 50°, mEMD = 80°,
MC bisects BMD , mCMD = 65°.
E
R.T.P.: m (AME)
Proof:
m(AMB)  50
3] If two straight lines intersecting, then every two opposite
angles are ……equal in measure…..
m(EMD)  80o
4] If two adjacent angles are supplementary, then their outer
sides are …on the same straight line……
MC bi sec ts BMD
5] If the two outer sides of two adjacent angles are
perpendicular then they are ……complementary……..
6] If two angles of a triangle are complementary, then the
triangle is ……a right-angled triangle….
m(CMD)  65o
 m(BMC)  65o
 m(AME)  360  (50  65  65  80)  100o
A
[4] In the opposite figure:
DE // BC , A ∈ DE , m (DAB) =
E
80° and m (EAC) = 50°.
Find the measures of the angles of
∆ ABC
Given: DE // BC , A ∈ DE , m
(DAB) = 80° , m (EAC) = 50°.
A
< 50° 80°
[6] In the opposite figure:
B ∈ AC , mCBE = 116°
D
BD bisects ABE
Find mABD
<
C
&
●
●
A
116°
B
C
Given: B ∈ AC , mCBE = 116°, BD bisects ABE
R.T.P.: mABD
B
Proof:
R.T.P.: angles of ∆ABC
Proof:
DE // BC
E
D
B  AC
m(CBE)  116o
A  DE
BD bi sec ts ABE
m(DAB)  80o & m(EAC)  50o
 m(B)  m(DAB) = 80o
 m(C)  m(EAC)  50o
 m(ABE)  180  116  64o
(alternate)
 m(ABD)  64  2  32o
(alternate)
 m(CAB)  180  (50  80)  50o
[7] In the opposite figure:
AC
[5] In the opposite figure:
mABC = 110°,mCBD =
35° and mABE = 140°
Find: mEBD
D
Given: AC
35°
Given: mABC =110°, mCBD = 35°,
mABE = 140°
R.T.P.: mEBD
110°
B 140°
A
o
m(ABC)  110 & m(CBD)  35 & m(ABE)  140
 m(EBD)  360  (110  35  140)  75
(Accumulative angles)
DE = {B},
mABD = 40°, BE bisects CBF
R.T.P.: mABF
B  AC
o
o
40°
A
Proof:
E
Proof:
o
DE = {B}, mABD = 40°
BE bisects CBF. Find mABF
C
D
m(ABD)  40
 m(CBE)  m(ABD)  400 (V.O.A)
BE bi sec ts CBF
 m(EBF)  m(CBE)  400
 m(ABF)  180  (40  40)  100o
B
●
●
F
C
E
Related documents