Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Unnatural Protein Engineering: Biochemical and Medicinal Applications Youngha Ryu Department of Chemistry Texas Christian University Methods of Protein Modification • Chemical modification of the reactive side chains • Total chemical synthesis • Ligation of synthetic peptide to a truncated protein • In vitro transcription/translation • Expression in living organisms Protein biosynthesis machinery DNA tRNA aa~AMP Aminoacyl-tRNA synthetase (aaRS) mRNA R NH 2 peptide chain R O NH 2 O O H2N O EF-Tu acylated tRNA mRNA ribosome “Standard” Genetic Codes PNAS 48, 1086 (1962) Suppressor tRNAs Nonsense Suppressors in E. coli Suppressor Type Anticodon change tRNA Gene Efficiency supE Amber CUG --> CUA tRNAGln glnV 0.8-20% supP Amber CAA --> CUA tRNALeu leuX 30-100% supD Amber CGA --> CUA tRNASer serU 6-54% supU Amber CCA --> CUA tRNATrp trpT supF Amber GUA --> CUA tRNATyr tyrT supZ Amber GUA --> CUA tRNATyr tyrU supB Ochre UUG --> UUA tRNAGln glnU supL Ochre UUU --> UUA tRNALys lysT supN Ochre UUU --> UUA tRNALys lysV supC Ochre GUA --> UUA tRNATyr tyrT supM Ochre GUA --> UUA tRNATyr tyrU glyT Opal UCC --> UCA tRNAGly glyT trpT Opal CCA --> UCA tRNATrp trpT 11-100% 0.1-30% In vitro System P. G. Schultz et al. Science 1989, 244, 182 Incorporation of unnatural amino acids into proteins in living organisms • Efficient transport or biosynthesis of unnatural amino acids • Unique codons (nonsense, four base, etc) • tRNA/aminoacyl-tRNA synthetase pair that is orthogonal to the endogenous system • Directed evolution of the aminoacyl-tRNA synthetase to selectively charge the orthogonal tRNA with an unnatural amino acid An “Orthogonal” pair from M. jannaschii 5' pC C G G C G G U G A C CU U G A A G G GA A C G G U A G C G G A C U C 3' AOH C C A G G C C G C C TA A C G G C C A G C U G G U U C C G CA G G U U C C U A G A • M. jannaschii tRNATyr is orthogonal to E. coli synthetases • M. jannaschii TyrRS is orthogonal to E. coli tRNAs • M. jannaschii TyrRS has minimal interaction with anticodon • M. jannaschii TyrRS has no proofreading activity Directed Evolution of Mj TyrRS Selection strategy Wang, Brock, Herberich & Schultz Science 292, 498, (2001) Synthetases for Unnatural amino acids O OH H 2N O OH H2 N O Turner, Graziano, Spraggon & Schultz J. Am. Chem. Soc., 127, 14976 (2005) Proc. Natl. Acad. Sci., 103, 6483 (2006) Expanded Genetic Code in E. coli O O O OH H2 N OH H 2N O OH H2 N OH H 2N O O OH H2 N O OH N3 O OH OH H 2N OH H2 N O O I NH2 OH H2 N O O OH H2 N O N C NO2 OH H2 N O N O O OS O O N O O OH NO 2 OH H2 N OH H 2N O OH H 2N O O OH H 2N OH H2 N O O N N CO2 H N B(OH)2 CF3 N OH H2 N OH H 2N O O OH H 2N OH H 2N O O OH H2 N O Sub-optimal yields of proteins in E. coli • Non-versatile two plasmid system? – Integration of the synthetase and tRNA genes into a single plasmid, which is compatible with most E. coli expression vectors and strains • Intrinsic low efficiency due to the competition with termination? – High suppression efficiency is achieved by naturally occuring non-sense suppressors (e.g. XL1-Blue) • Inefficient transcription and processing of tRNA? – New promoter and flanking sequence • Inefficient expression of aminoacyl-tRNA synthetase? – New promoter New Mj tRNA expression cassette • E. coli prolyl tRNAs have C1-G72 pair, which is major identity determinant of MjtRNA – Important context for the precise tRNA processing • proK tRNA is most frequently used in E. coli • FIS enhances tRNA transcription 3' U U U U U U C G G A C G A G C RNAse T, PH etc 5' U U RNAse P C C G G C G G U C G A CU U G A A G G A GA A C G G G C C G G A C A AAUUCGAAAAGCCUGCUC A A C Terminator C RNAse III A RNAse E G G C C G C C U A A CGGCC A GCUGG C U C U G CA G G U C C U A U A C U A JYTRN Mutant glnS promoter enhances the synthetase expression -35 region -10 region +1 WT AAAAAACTAACAGTTGTCAGCCTGTCCCGCTTATAAGATCATACGCCGTTATACGTT Mutant AAAAAACTAACAGTTGTCAGCCTGTCCCGCTT-TAATATCATACGCCGTTATACGTT WT BpaRS Mutant Asp286Arg (D286R) substitution enhances tRNA(CUA) binding affinity TyrRS (WT) – tRNATyr (WT) TyrRS (WT) – tRNATyr (CUA) TyrRS (D286R) – tRNATyr (CUA) His283 Asp286 Asp286 Arg286 G34 G34 C34 C34 Phe261 Km= 0.35 mM kcat= 0.19 s-1 kcat/Km (relative) = 1 Km= 39 mM kcat= 0.070 s-1 kcat/Km (relative) = 0.0033 Kobayashi et. al. Nat. Struct. Biol. 10, 425 (2003) Km= 0.68 mM kcat= 0.079 s-1 kcat/Km (relative) = 0.22 Polycistronic expression of MjtRNA aaRS promoter glnS tRNA promoter - lpp tRNA copy # 0 1 JYTRN glnS glnS proK 1 glnS’ glnS’ glnS’ proK proK proK 3 6 1 b-Galactosidase assay for suppression efficiency TAG araBAD promoter leader lacZ proK proK + D286R proK + glnS’ proK + glnS’ + D286R + 3TRN + 6TRN Efficient incorporation of many different unnatural amino acids O O N3 H2N CO2H Bpa H2N CO2H pAcPhe H2N CO2H pAzPhe I H2N CO2H pIPhe Efficiency and fidelity Optimizing protein yields in E. coli • E. coli prolyl-tRNA promoter and terminator for the amber suppressor tRNA • Mutated form of the glnS promoter for the synthetase • D286R substitution in the synthetase gene • Multiple copies of the suppressor tRNA gene • Yield of adiponectin (Glu123Bpa) mutant: 0.4g/L Ryu & Schultz Nat. Methods 3, 263 (2006) Site-selective modification of proteins O H2N N O PEG O O NH2 O PEG O N O HN PEG PEG O N H O pAcPhe N H N H O O Lys N H O http://www.ambrx.com Photocaged Tyrosine Tyr503 lactose Deiters, Groff, Ryu, Xie & Schultz Angew. Chem. Int. Ed. 45, 2728 (2006) Incorporation of a distance probe into proteins Tsao, Summerer, Ryu & Schultz J. Am. Chem. Soc. 128, 4572 (2006) Incorporation of an IR probe into proteins Relative Absorbance 1.0 pCNPhe A 2236 0.8 0.6 FeIII pCNPhe64 Mb FeIII (CN) pCNPhe64 Mb 0.4 0.2 0.0 2180 2200 CO [2239 cm-1] Azide [2234 cm-1] NO [2230 cm-1] Cyanide [2236 cm-1] O2 [2230 cm-1] __ 1.0 Relative Absorbance Met-ferric [2248 cm-1] 2220 2240 2260 2280 Wavenumber (cm-1) Ferrous (Fe2+) Ferric (Fe3+) adducts adducts Deoxyferrous [2233 cm-1] 2248 B 2230 0.8 FeII(CO) pCNPhe64 Mb FeII(NO) pCNPhe64 Mb 0.6 FeII(O2) pCNPhe64 Mb 2239 0.4 0.2 0.0 2160 2180 2200 2220 2240 2260 Wavenumber (cm-1) Schultz, Supekova, Ryu, Xie, Perera & Schultz J. Am. Chem. Soc. 128, 13984 (2006) Co-translational protein modification OH OH H2N O Tyrosine Thrombin Desulfo-hirudine Ki = 307 fM Thrombin Sulfo-hirudine Ki = 26 fM Liu & Schultz, Nat. Biotech. 24, 1436 (2006) Incorporation of an NMR probe TE domain of the human FAS Cellitti et. al. J. Am. Chem. Soc. 130, 9268 (2008) Unnatural amino acids incorporated by the mutant TyrRS in E. coli Identification of the protein modification and secretion pathways by photo-crosslinking in E. coli N-Acetylation of recombinant proteins in E. coli • Na-Acetylation (e.g. Z-domain etc) • Ne-Acetylation of lysine side chains (e.g. Porcine and bovine somatotropins) Secretion pathway of the YebF protein in E. coli N-Terminal acetylation of the Z-domain depends on E. coli strains and expression plasmids E. coli Strain Deleted Gene Plasmid - Met1 N-Acetylation BL21(DE3) pET Yes/No Yes BL21(DE3) pBAD Yes No AD494(DE3) pET Yes No JW4335 rimI pBAD Yes No JW1053 rimJ pBAD Yes No JW1423 rimL pBAD Yes No JW2293 ack pBAD Yes No JW2294 pta pBAD Yes No JW4030 acs pBAD Yes No LCB90 ack pBAD Yes No N-Terminal acetylation of the Z-domain is context-dependent Position Amino acid Observed M.W. Bpa 7968.3 S3 Tyrosine 7886.5 Bpa 7913.9 V4 Tyrosine 7827.4 Bpa 7898.2 D5 Tyrosine 7811 - Met1 Na-Acetylation Yes Yes Yes No Yes No Photo-crosslinking and proteomics analysis kDa Marker 220 80 50 - Control S3Bpa 2 3 1 V4Bpa D5Bpa 2 1 1 30 20 15 10 - Band S3Bpa V4Bpa D5Bpa 1 Protein A Protein A Protein A EF-Ts 2 Protein A Hsp70 PBP EF-Tu Protein F 3 EF-Tu Protein A Strategy to identify the YebF transporter Unnatural protein medicinal chemistry Directed evolution of the archaea LeuRS system Next round of positive selection Selection with a single reporter plasmid Positive selection + Unnatural amino acid + Cm + Uracil Survivors containing aaRS capable of charging any natural or unnatural aa on the orthogonal tRNA - Unnatural amino acid Negative selection + 5-FU Cells that incorporate natural amino acids make toxic product from 5-FU and die; Cells that incorporate unnatural amino acid only survive on 5-FU Deletion of the upp and pyrF genes by the recombinase-based gene replacement GeneHog D upp D pyrF Minimal media + Uracil Minimal media + Uracil + Uridine Summary • A single plasmid system for the high yield expression of proteins containing unnatural amino acids • Broad applications depending on the physicochemical properties of unnatural amino acids – chemical and photochemical reactions, spectroscopic probes, novel therapeutics etc. • Ongoing projects – Identification of the protein acetylation and secretion pathways – Unnatural protein medicinal chemistry – Directed evolution of the leucyl-tRNA synthetase Acknowledgments Graduate Students • • • • Minoro Aoshima Lina Bernal-Perez Pradeep Budhathoki Aery Lee Undergraduate Students • • • • • Kiran Butt Michael Foster Brett McKnight Fatima Sahyouni Diana Tran Collaborators • Dr. Laszlo Prokai (UNTHSC) • Dr. Peter Schultz (TSRI) Financial Support TCU (Start-up, RCAF, SERC)