Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Innovation from Nature Pichia pastoris: Protein Production and More Product Substrate Cofactor Byproduct Cosubstrate Franz Hartner1, Liu Zhibin1, Beate Pscheidt1, Bettina Janesch1, Roland Weis1,2, Sandra Abad1, Karl Gruber1 and Anton Glieder1 1Institute of Molecular Biotechnology, Research Centre Applied Biocatalysis , Petersgasse 14, A-8010, Graz, AUSTRIA, [email protected] 2VTU Engineering GmbH, Grambach, Austria Im Rahmen des K plus Programms gefördert durch: The Making of Industrial Biocatalysts Organic, Food, Polymer Chemistry Bioprocess Engineering „Bio“Contributions Identification, Isolation Expression Adaptation Production (Expression) Organic, Food, Polymer Chemistry Bioprocess Engineering © Angewandte Biokatalyse-Kompetenzzentrum GmbH Natural Sources for Biocatalysts * Most industrial enzymes isolated from microorganisms * Produced by microorganisms * Enzymes from higher eukaryotes * Additional unique diversity * Produced by microorganisms © Angewandte Biokatalyse-Kompetenzzentrum GmbH Is Simple & fast Should be Simple & fast Pichia pastoris – methylotrophic yeast Excellent folding capabilities Eukaryotic post-translational modifications High Cell density, cheap media High purity of secreted proteins Plasmid cloning in E. coli before Pichia transformation High variations in screening (copy effects) Slower than E. coli and labour intensive © Angewandte Biokatalyse-Kompetenzzentrum GmbH Pichia pastoris: Expression, Engineering, Biotransformation Reliable 96 well plate screening Rational design of enzyme variants Plasmid/E. coli independent library generation Directed Evolution Enhanced 2nd generation expression system (vectors/platform strains) Whole Cell Biocatalysis © Angewandte Biokatalyse-Kompetenzzentrum GmbH Pichia - Reliable Micro Cultivation methanol inducible system OD595 after 60 h = time of induction 14 12 10 8 6 4 2 0 1 0,2 1 2 2 3 3 4 Glucose concentration / % enzyme activity after 75 h of induction 0,2 © Angewandte Biokatalyse-Kompetenzzentrum GmbH 1 2 3 Glucose concentration / % Weis, R., R. Luiten, W. Skranc, H. Schwab, M. Wubbolts, and A. Glieder. 2004. FEMS Yeast Research 5:179-189. Apoptosis/Necrosis Reporter for media/screening optimization 0.2% D 1% D 2% D OD595 after 60 h = time of induction 14 12 10 8 6 4 2 0 1 0,2 3% D negative control H2O2induced 32 43 1 Glucose concentration / % 2 enzyme activity after 75 h of induction Tunel assay Necrosis assay © Angewandte Biokatalyse-Kompetenzzentrum GmbH H. Weis, R., R. Luiten, W. Skranc, FEMS Yeast Research 5:179-189. Glucose concentration / % Schwab, M. Wubbolts, and A. Glieder. 2004. 300 µL 4000 L 4000 L HRP HbHNL © Angewandte Biokatalyse-Kompetenzzentrum GmbH Weis, R., R. Luiten, W. Skranc, H. Schwab, M. Wubbolts, and A. Glieder. 2004. FEMS Yeast Research 5:179-189. Structural Design HydroxyNitrileLyase HNL (R)-2-chloro mandelonitrile key intermediate for (R)-2-chloro-mandelic acid for production of cardiovascular drug Glieder et al., Angew. Chem. Int. Ed. (2003) 42; 4815-4818 (R)-2-hydroxy-4-phenylbutyronitrile Intermediate for „-prils“ Weis et al., Angew. Chem. Int. Ed. (2005) 44 (30), 4700-4704 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Designed for High Activity 600 500 µmol/min/mL 400 300 200 100 0 WT A111G V317G Synthesis of (R)-2-Chloro mandelonitrile 2-chloro mandelonitrile in model of active centre of PaHNL5 6-7 fold increase in activity ee > 95 % Glieder, A., et al (2003) Angew Chem, Int Ed, 42, 4815-4818 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Designed Stereoselectivity Low Stereoselectivity with substrates with CH2 spacers between C=O and aromatic ring OH OH R1 CN O CN R2 2a 2b 2x 3-phenylpropenal OH OH CN O 1a COOEt Synthesis of precursors of ACE (Angiotensin Converting Enzyme) inhibitors 1b 3-phenylpropanal R. Weis, R. Gaisberger, W. Skranc, K. Gruber, A.Glieder (2005), Angewandte Chemie Int. Ed., 44, 4700-4704 © Angewandte Biokatalyse-Kompetenzzentrum GmbH New R-HNLs for API Production structure guided design (R)-Hydroxynitrile lyases OH OH CN CN Cl ACE inhibitors R. Weis, R. Gaisberger, W. Skranc, K. Gruber, A.Glieder (2005) Angew. Chemie Int. Ed., 44, 4700-4704 Directed evolution Further increase in ee and activity Liu, Z., Pscheidt, B., et al (2007) ChemBioChem, in press Anticoagulant Glieder, A., et al (2003) Angew Chem, Int Ed, 42, 4815-4818 © Angewandte Biokatalyse-Kompetenzzentrum GmbH New Strategy for Library Generation Random & Site Directed mutagenesis Linear Expression Cassette by OE-PCR: • Random Mutagenesis – epPCR Overlap 1 ╳ Partial GAP promotor ╳ ╳ ╳ Mutated gene Alpha-factor sequence Zeocin cassette Overlap 2 • Site-Saturation Mutagenesis Overlap 1 ╳ Partial GAP promotor Alpha-factor sequence Mutated gene Zeocin cassette Overlap 2 Partial gene © Angewandte Biokatalyse-Kompetenzzentrum GmbH New Strategy for Library Generation Recombination • Single gene recombination: combining favorable mutations • HNL variants of 1st round as templates • Pool of fragments generated by PCR • In vitro recombination • Linear Expression Cassette by OE-PCR: Overlap 1 linker ╳ promotor ╳ ╳ ╳ Mutated gene Selection marker Overlap 2 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Pichia pastoris a host for screening and production A260 DA280Dt-1/10-3min-1 Direct transformation of linear integration cassette 400 350 300 250 200 150 100 50 0 0 10 20 30 40 50 Transformants © Angewandte Biokatalyse-Kompetenzzentrum GmbH 60 70 80 90 100 Synthesis of Cl-, Br- and Fsubstituted (R) -mandelonitriles 100 90 Conversion% 80 70 60 muteins 50 40 30 20 10 0 0,5 h A111G 1h 2h 4h 4x A111G Higher activity and higher ee by Liu, Z., Pscheidt, B., et al (2008) ChemBioChem, Directed Evolution in Pichia pastoris © Angewandte Biokatalyse-Kompetenzzentrum GmbH New Strategy for Library Generation Random & Site Directed mutagenesis Linear Expression Cassette by OE-PCR: • Random Mutagenesis – epPCR Overlap 1 ╳ Partial GAP promotor ╳ ╳ ╳ Mutated gene Alpha-factor sequence Zeocin cassette Overlap 2 • Site-Saturation Mutagenesis Overlap 1 ╳ Partial GAP promotor Alpha-factor sequence Mutated gene Zeocin cassette Overlap 2 Partial gene © Angewandte Biokatalyse-Kompetenzzentrum GmbH Site Saturation Approach (sterically hindered aliphatic aldehydes) H3C CH3 CHO OH R-HNL/NaCN R-HNL/NaCN 3M CitrateCitrate3M phosphatephosphatebuffer (pH 2.4) buffer (pH 2.4) Hydroxypivalaldehyde Hydroxypivalaldehyde H3C OH H3C CN OH R-Hydroxypivalaldehyde(R)-Hydroxypivalaldehyde cyanohydrine cyanohydrin precursor for panthotenic acid • Saturation of hydrophobic sites in substrate binding pocket – ~200 transformants per site screened for improved conversion • • • ~10 fold improved TOF value enantiomeric excess ≥ 95% possible - reasonable amount of enzyme For pivalaldehyde and hydroxypivalaldehyde conversion All these enzymes produced by Pichia pastoris © Angewandte Biokatalyse-Kompetenzzentrum GmbH Engineered Promoter Libraries delta5 delta6 delta7 delta8 delta1 delta2 Transcription Start delta4 delta3 HAP1 HSF STRE ADR1 ABAA RAP1 (TUF1) HAP234 HAP234 HSF delta9 QA-1F GCR1 MAT1MC HAP234 Transcription factor binding sites: e.g. HSF......heat shock factor HAP…..O2 and glucose regulation STRE…..stress response element GCR….glucose repressor AOX1 promoter 953 bp Deletions on many positions Short deletions (5-60 bp), covering putative transcription factor binding sites Hundreds of different variants © Angewandte Biokatalyse-Kompetenzzentrum GmbH First Deletions Library Next generation system commercialized by VTU Technology relative GFP fluorescence after 72h of induction 160% Strength 140% Regulatory features Promoter length 120% 100% d1 WT 80% d6* 60% d2d6 40% 20% 0% d2 (single copy clones) © Angewandte Biokatalyse-Kompetenzzentrum GmbH Basal (short) promoters Transcription Initiation Site TATA box P(AOX1) P(AOX1) basal ScLeu2 basal or AOX1 basal promoter fragment Basal promoters were cut 5’ of the TATA box Different fractions of the promoter were added Variants with small putative cis-acting elements added to the basal promoters © Angewandte Biokatalyse-Kompetenzzentrum GmbH Schematic time course of GFP expression wild type promoter d6* promoter GFP basal promoter Growth phase Derepression phase Methanol induction phase time Different promoters, different regulatory features, different levels of GFP expression (growth, derepression, methanol phase) © Angewandte Biokatalyse-Kompetenzzentrum GmbH Platform Strains & Combinatorial Expression expression enhancers • Models: • Horseradish Peroxidase • (Isoenzyme C) • Candida antarctica lipase B • (CALB) © Angewandte Biokatalyse-Kompetenzzentrum GmbH HRP Overexpression HRP activity [mOD 405/min] 1600 1400 HRP multi copy strain HRP single copy strain 1200 51x 1000 800 600 400 200 0 pHRP-AOX1 1.6x GAP-PDI 21x AOX1∆6*-PDI 28x 30x AOX1-PDI 11.6x pHRP-AOX1 GAP: constitutive ∆6* : derepression, medium induction AOX1: strong induction by methanol © Angewandte Biokatalyse-Kompetenzzentrum GmbH 18x GAP-PDI AOX1-PDI AOX1∆6*-PDI CALB Overexpression low and high copy number A combinatorial problem !!! CALB activity [mOD 405/min] CALB-AOX∆6* low copy strain CALB-AOX∆6* high copy strain 1200 1000 3.3x 800 600 400 200 1.4x 1.6x 1.6x 0.1x 1.6x 2.4x 0 CALB-∆6* AOX1∆6*- AOX1-PDI GAP-PDI CALB-∆6* GAP-PDI AOX1∆6*- AOX1-PDI PDI PDI © Angewandte Biokatalyse-Kompetenzzentrum GmbH Alternative Oxidases • Providing metabolic flexibility – Developmental conditions (senescence, fruit ripening) – Environmental fluctuations – stress answer, fungicide resistance • Minimize generation of ROS • Maintain TCA cycle – citric acid production (Aspergillus niger) Antimycin A Cyanide, azide Hydroxamic acids, alkyl gallates Introduction AOD structure • Nuclear encoded • Plants: dimer, fungi and yeasts: monomer • 2 highly conserved E-X-X-H motifs → di-iron di-carboxylate proteins • Model for C-terminal, membrane embedded part → four helix bundle matrix Structural model, Berthold, 2003 Inner mitochondrial membrane Structure Expression system • Expression host: Pichia pastoris WT • Enzymes plant and fungal AODs linker • Expression constructs: – AOD-linker-Streptag II – AOD-EK-GFP-Streptag II AOD Strep-Tag II AOD-StrepTag II 1125 bp linker AOD linker AOD-EK-GFP-StrepTag II 1 8 8 1 bp • PCR based linear expression cassettes • Structural genomics (membrane proteins) Expression system GFP S trep-Tag II Purification Cells Mitochondria Cell debris Matrix (3) Mitochondrial membranes (2) Sol. Proteins (5) Residual membranes(4) Unbound Proteins Strep-tagged proteins (6-9) (12-14) MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [kDa] MW [kDa] 191 97 191 97 64 64 51 51 39 39 28 19 14 28 19 14 AOD verified by MALDI analysis (S. Deller) purified membrane enzyme = active CD spectra Purification Metabolic Engineering Enoate reductases X R' H R' X Monooxygenases R R'' * * R'' H R' OH R R' R R' Dehydrogenases X C-source(s) R XH R' R R' NAD(P)H ATP NAD(P)+ ADP Kinases, Transferases R-OH 2- R-OPO3 Central metabolism Enzyme cascades Optimized cell growth © Angewandte Biokatalyse-Kompetenzzentrum GmbH metabolites, bulk chemicals Engineering Central Metabolic Pathways of P. pastoris • Bottlenecks in NAD+ regeneration and ATP feedback inhibitions limit flux through glycolysis and TCA cycle Glucose ADP, 2 NAD+ Pyruvate • Uncoupling of NAD+ regeneration from ATP production by overexpressing AOD 2 NAD+ 2 CO2 higher growth rate higher substrate uptake rate lower final biomass yield AcetylCoA TCA cycle → higher flux through central carbon metabolism 6 NAD+, 2 FAD +PFK overexpression → improved NAD+ regeneration © Angewandte Biokatalyse-Kompetenzzentrum GmbH Methylotrophic Yeasts for Whole Cell Biocatalysis The lucky 4….. methanol induces expression of the biocatalysts Expression of endogenous cofactor regeneration system induced by methanol Back to the cell….. Pichia pastoris is designed to tolerate methanol and methanol can act as a solvent for the substrate Methanol is a nutrient and Cosubstrate for the Cofactorregeneration © Angewandte Biokatalyse-Kompetenzzentrum GmbH Co-factor Regeneration !using the whole pathway! CH3OH CH3OH Toxic intermediates O2 AOX1/2 GSH 2 NADH per MeOH H2O2 CTA NAD+ NADH O2 + H2O DAS Peroxisome CO2 rearrangement reactions DAK1 FBA TPI FBP F1,6BP GAP CO2 as byproduct irreversible reaction F6P Pi P. pastoris on methanol S. cerevisiae on glucose GAP cell constituents DHAP ATP ADP FMD1 NAD+ NADH Xu5P GAP DHA DHA FLD1 HCOOH GS-CH2OH HCHO HCHO Cytosol qS,max 10-17 mmol g-1 h-1 Jahic et al., 2002 qS,max 15 mmol g-1 h-1 Blank et al., 2004 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Growth of DAS Knockout Strains 0.35 glucose methanol 0.30 µ / h-1 0.25 0.20 0.15 0.10 0.05 0.00 wild wild type type Daox1 aox1 Ddas1 das1 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Ddas2 das2 Ddas1Ddas2 das1 das2 Butanediol DH catalysed Biotransformtion • • • • Increased cell density (60 g/L) 25 g/L substrate concentration 6% methanol Shake flasks O OH 3S-acetoine O OH 3R-acetoine © Angewandte Biokatalyse-Kompetenzzentrum GmbH OH OH meso-2,3-butanediol OH OH 2R,3R-butanediol Synthetic ADH3 and ADH4 genes ADH3_WT ADH3_synthetic_high expression ADH3, ADH4 are NADPH dependent (BASF) ADH3 ADH4 © Angewandte Biokatalyse-Kompetenzzentrum GmbH Yields in Shake flasks O conversion/[%] Acetophenone 100 80 60 40 20 0 0 1 2 3 4 time/[h] CAP conversion/[%] CBS 7435 ADH3 B4 ADH4 G5 O 100 80 60 40 20 0 0 2 4 6 8 10 12 14 16 18 20 22 24 time/[h] ADH3 B4 ADH4 G5 • shake flask cultures, 1 g/L substrate © Angewandte Biokatalyse-Kompetenzzentrum GmbH Cl Pichia pastoris based Synthetic biotechnology Engineered enzymes laboratory evolved & designed 400 350 300 A260 250 200 150 100 50 0 0 10 20 30 40 50 Transformants Optimized synthetic genes © Angewandte Biokatalyse-Kompetenzzentrum GmbH 60 70 80 90 100 Synthetic Biotechnology 160% 140% 120% 100% WT 80% 60% 40% d2 20% 0% Synthetic (modular) promoter libraries d1 d6* d2d6 License free and advanced expression system Overlap 1 ╳ promotor ╳ ╳ Mutated gene ╳ Overlap 2 Selection marker PCR based linear expression cassettes © Angewandte Biokatalyse-Kompetenzzentrum GmbH Engineered platform hosts Synthetic Biotechnology in Whole Cell Biocatalysis Classic: Growing Cells By-product: biomass Carbon metabolism and biomass production 5 O2 1 CH3OH Minimal Cell for NAD(P)H dependent catalysis 2 HCHO + NADH + H recomb. 4 2O2 reduced chiral product + H2O peroxisomes OH OH + R2 R1 R1 H X * oxidised Substrate Reductase/ Dehydrogenase O R1 R2 R1 R2 Oxygenase Enoate-Reductase X R2 R1 R3 + O2 * R3 H R2 Classic: Resting Cells No catalyst regeneration enzyme R2 R1 H2O CO2 NAD+ H2O2 1/ 3 HCOOH P.methylotrophic pastoris cells Yeast Engineered © Angewandte Biokatalyse-Kompetenzzentrum GmbH Glieder group Pichia Team (Graz) Roland Weis Hannelore Mandl Beate Pscheidt (Karl Gruber) Liu Zhibin Franz Hartner Sandra Abad Claudia Ruth Ulrike Schreiner Kerstin Kitz Bettina Janesch Manuel Peter Astrid Hoermann Maria Freigassner Andrea Mellitzer GLIEDER GROUP © Angewandte Biokatalyse-Kompetenzzentrum GmbH July 2007 & DSM, BASF, VTU Project Ideas Strain engineering by promoter replacements Design of fully synthetic promoters for different yeast starins © Angewandte Biokatalyse-Kompetenzzentrum GmbH