Download R.8 - Gordon State College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Sullivan Algebra and
Trigonometry: Section R.8
nth Roots, Rational Exponents
Objectives of this Section
• Work with nth Roots
• Simplify Radicals
• Rationalize Denominators
• Simplify Expressions with Rational Exponents
The principal nth root of a real number a,
symbolized by n a is defined as follows:
n
a  b means a  b
n
where a > 0 and b > 0 if n
is even and a, b are any
real numbers if n is odd
n
a  a,
if n is odd
n
a  a,
if n is even
n
n
Examples:
3
81  9
because 9 2  81
 27  3 because - 3  27
3
Examples:
5
12  12
5
  12    12
6
5 5
6
  5   5  5
8
z  z
5
5
6
6
8
Properties of Radicals
n
ab  a b
n
n
n
n
a
a
n
b
b
n
a   a
mn
m
a
n
mn
a
m
Simplify:
4
32 x 
5
4
16 x 2 x
 16 x
4
4
44
2x
 2 x 4 2x
Simplify:
8 x  3 x 50 x
3
 2  4  x  x  3x 25 2  x
2
= 2 x 2 x - 15 x 2 x = - 13 x 2 x
If a is a real number and n > 2 is an
integer, then
a
1
 a
n
n
provided
n
a exists.
Note that rational exponents are equivalent to
radicals. They are a different notation to
express the same concept.
Example:
8
1
3

3
82
If a is a real number and m and n
are integers containing no common
factors with n > 2, then
a
m
n
 a   a
provided
Example: 25
- 5
2
m
n
n
n
m
a exists.
1 -5
2
( )
= 25
=
(
- 5
25
)
1
1
=5 = 5 =
3125
5
- 5
Example:
 27 x 
4

1
3
3
  27 x   27 x x
4
3
  3x  x
3
 3 x  x
3
3
3
3
 3x  x
3 3
When simplifying expressions with rational
exponents, we can utilize the Laws of
Exponent.
a a a
m n
mn
a 
m n
a
mn
m
ab  a b
a
1
mn

a

if
a

0
n
nm
a
a
n
n
 a  a if b  0
 b bn
n
n n
Simplify each expression. Express the
answer so only positive exponents occur.
1
1 2
5
 3x 2 y
 3x 2  2 3 

 

2

  1 15 
3
 x y   y


1
1

4 2


2
3

3 x 


1
4 2
5
 y 
 

1
2
1

4
3 2
 3x
 4 
 5
 y 
1
4 2
5

 y 
 
1
3 2  x

1
4 2
3



y
2
5
3x
2

3
2
3y 5
2
3x 3
Write the following expression as a single
quotient in which only positive exponents
and / or radicals appear:



1
1 2
2
2
2x x  4
 x 4
2
2
x 4
x


2
4
  2 x x
1
2
2
x 4
2

1
2
 2x  x

3
4 x

2
x



2
4
  2 x x
1
2

x 4
2 x  8x  x


4 x
3
2
3
x 4
2
2
 
1
2
3
x 4
2
x  8x
3

 

x 4
2


3
2

x x 8

2
x 4
2

3
2
Related documents