Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Prof. dr. A. Achterberg, Astronomical Dept. , IMAPP, Radboud Universiteit Aim: To cast all equations in the same generic form: Reasons: 1. Allows quick identification of conserved quantities 2. This form works best in constructing numerical codes for Computational Fluid Dynamics Generic Form: Transported quantity is a scalar S, so flux F must be a vector! Component form: Generic Form: Transported quantity is a vector M , so the flux must be a tensor T . Component form: Mass conservation: already in conservation form! Continuity Equation: transport of the scalar Excludes ‘external mass sources’ due to processes like two-photon pair production etc. Define mass flux F =V : Ñ F 0 t m F O t cell faces Density inside a cell Fluxes at four cell boundaries! Mass conservation: already in conservation form! Continuity Equation: transport of the scalar Momentum conservation: transport of a vector! Algebraic Manipulation Starting point: Equation of Motion Use: 1. product rule for differentiation 2. continuity equation for density Use divergence chain rule for dyadic tensors Rewrite pressure gradient as a divergence Momentum density Stress tensor = momentum flux Momentum source: gravity Energy density is a scalar! Kinetic energy density Internal energy density Gravitational potential energy density Irreversibly lost/gained energy per unit volume Internal energy per unit mass Specific enthalpy Irreversible gains/losses, e.g. radiation losses “Dynamical Friction” Summary: conservative form of the fluid equations in an ideal fluid: Mass Momentum Energy s V Ñ s 0 , s cv ln( P ) t T ( s) Ñ Vs 0 t ADIABATIC FLUID Extra mathematical constraints one can put on a flow: 1. Incompressibility: d Ñ V 0 0 dt 2. No vorticity (“swirl-free flow”): Ñ V = 0 V Ñ 3. Steady flow: any flow quantity 0 t constant , V =Ñ , V Uxˆ , any flow qauntity 0 Ñ V 0 1 2 1 2 r sin 2 0 2 r r r r sin V Ñ 1 2 1 r sin 0 r 2 r r r 2 sin Solution: B (r , ) m Ar m m1 Pm cos (m 1, 2,3,....) r 1 2 1 r sin 0 r 2 r r r 2 sin Solution: B m (r , ) m Ar m1 Pm cos (m 1, 2,3,....) r Far away from sphere: V Uxˆ =Ñ Ux Ñ Ur cos This suggests: m = 1 ! 1 2 1 r sin 0 r 2 r r r 2 sin Trial Solution: (r , ) Ar Vr B cos 2 r 2B 1 B A 3 cos , V A 3 sin r r r r B (r , ) Ar 2 cos r Trial Solution: Vr 2B 1 B A 3 cos , V A 3 sin r r r r For r : Vr A cos U cos , V A sin U sin ( xˆ = cos rˆ sin qˆ , V Uxˆ ) A=U B (r , ) Ur 2 cos r Trial Solution: Vr 2B 1 B U 3 cos , V U 3 sin r r r r 2B On surface sphere, for r a : Vr (r a) U 3 cos 0 for a Ua 3 B 2 a 3 Vr 1 3 U cos , r r 1 a3 V 1 3 U sin r 2r a3 (r , ) r 2 U cos 2r Constant density flow: 2 2 V V V 2 P V Ñ V Ñ V Ñ V Ñ Ñ 0 2 2 2 t vanishes for potential flow V Ñ P V V Ñ V Ñ t Steady constant-density flow around sphere: V 2 P V 2 P U 2 P Ñ 0 constant 2 t 2 2 t P x 2 2 U V x P 2 a 3 Vr 1 3 U cos , r r 1 a3 V 1 3 U sin r 2r 3U Vr (r a) 0 , V (r a) sin 2 U 2 9 2 P P 1 sin 2 4 P P PARADOX OF D’ALAMBERT U 2 9 2 1 sin 2 4 NO fore-aft symmetry, Now there is a drag force! Viscosity = internal friction due to molecular diffusion, viscosity coefficient : Viscous force density: f visc Ñ Tvisc 2V (incompressible flow!) Equation of motion: V V Ñ V Ñ P 2V t coll 3 2 coll 3 coll V V Ñ V Ñ P 2V t Inertial force V Ñ V Re viscous force 2V ( / specific viscosity) V 2 / L VL 2 V / L Inertial force V Ñ V Re viscous force 2V V 2 / L VL 2 V / L ( / specific viscosity) Very viscous flow: >> VL, Re << 1 Friction-free flow: << VL, Re >> 1 Because of viscosity: no slip, velocity vanishes on sphere! Ñ V 1 2 1 r V sin V 0 (spherical coordinates!) r 2 r r r sin Automatically satisfied by writing: r , ˆ 1 1 V Ñ A with A f Vr 2 , V r sin r sin r sin r V Ñ V Ñ P 2V Steady flow equation Slow flow approximation of this equation: Ñ P V 2 From: P 0 V Ñ w Ñ 2 2V Ñ Ñ V Ñ Ñ V , w Ñ V vanishes: incompressible flow! P V Ñ w Ñ Steady slow flow equation 2 Take divergence of slow flow equation: P Ñ Ñ w 0 2 P 0 2 P0 2 2 P(r , ) 1 2 P 1 P r sin 2 0 2 r r r r sin General solution with constant pressure at infinity: 2 3 1 a a a 3 P r , P0 b1 b2 cos b3 cos 2 ... 2 r r r 2 monopole term dipole term quadrupole term For this particular case: a P r , P0 b cos r Components of pressure gradient: 2 P 2ba 2 cos 1 P ba 2 sin , 3 r r r r3 P V Ñ w Ñ Steady slow flow equation 2 1 Vr 1 w Ñ V rV r r r ˆ 1 ˆ f f r sin Vorticity: 2 sin 2 2 r r 1 sin P V Ñ w Ñ Steady slow flow equation 2 1 Vr 1 w Ñ V rV r r r - Ñ w 1 r sin ˆ 1 ˆ f f r sin ˆ 1 ˆ r q r r P V Ñ w Ñ Steady slow flow equation 2 2 P 2 ba cos r r 2 sin r3 1 P ba 2 sin r sin r r r3 ba 2 sin 2 r 2 ba sin 2 r 2 sin 2 2 r r ba 2 1 2 sin sin r Trial solution: d2 f 2 f 2 ba 2 r , f (r )sin 2 2 sin sin 2 r r dr 2 2 ba sin 2 r d2 f 2 f 2 ba 2 d2 f 2 f ba 2 2 sin 2 2 2 2 sin r r dr r r dr Solution: f (r ) B Ar r 2 solution homogeneous equation ba 2 r 2 particular solution 2 B ba 2 r 2 (r , ) Ar sin r 2 Conditions at infinity: 1 U cos as r r 2 sin U A 2 1 V U sin as r r sin r Vr U 2 B ba 2 r 2 (r , ) r sin r 2 2 Conditions at surface sphere: 1 0 as r a r 2 sin U 3 3 U B a , b 4 2 a 1 V 0 as r a r sin r Vr Ua 2 sin 2 r , 4 r 2 a r 2 3 a r a All flow quantities can now be determined: 3 a 1 a 3 3 a 1 a 3 Vr U cos 1 , V U sin 1 2 r 2 r 4 r 4 r 3 U cos a P r , P0 b cos P0 2 a r 2 a r 2 t force T nˆ = T11 xˆ1 T21 xˆ 2 T31 xˆ 3 area Tij T ji momentum flux tensor Vi V j P ij x j xi (Cartesian coordinates!) T P I T visc = P I - Ñ V + Ñ V FD dO Trr cos Tr sin = 2 a 2 d sin P T visc rr cos T visc r sin |r a 0 surface element † For this particular flow at r=a: Trr P 2 Tr r ur 3U =P =P0 cos r 2a u r r ur 3U sin r 2 a FD 2 a 2 d sin Trr cos Tr sin 0 3U 2 a 2 d sin P0 cos 2a 0 6 aU