Download Probability and Random Processes (Part – I)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Probability and Random Processes (Part โ€“ I)
1. The variance of a random variable X is ๐œŽ๐‘ฅ2 . Then the variance of โ€“kX
(where k is a positive constant) is
(a) ๐œŽ๐‘ฅ2
(c) ๐‘˜๐œŽ๐‘ฅ2
(b) โˆ’๐‘˜๐œŽ๐‘ฅ2
(d) ๐‘˜ 2 ๐œŽ๐‘ฅ2
[GATE 1987: 2 Marks]
Soln.
๐‘ฝ๐’‚๐’“(โˆ’๐’Œ๐‘ฟ) = ๐‘ฌ[(โˆ’๐’Œ๐‘ฟ)๐Ÿ ]
๐ˆ๐Ÿ = ๐‘ฌ[๐’Œ๐Ÿ ๐‘ฟ๐Ÿ ]
= ๐’Œ๐Ÿ ๐‘ฌ[๐‘ฟ๐Ÿ ]
= ๐’Œ๐Ÿ ๐ˆ๐Ÿ๐’™
Option (d)
2. White Gaussian noise is passed through a linear narrow band filter. The
probability density function of the envelope of the noise at the filter
output is
(a) Uniform
(c) Gaussian
(b) Poisson
(d) Rayleigh
[GATE 1987: 2 Marks]
Soln. The narrow band representation of noise is
๐’(๐’•) = ๐’๐’„ (๐’•) ๐œ๐จ๐ฌ ๐Ž๐’„ ๐’• + ๐’๐’” (๐’•) ๐ฌ๐ข๐ง ๐Ž๐’„ ๐’•
Its envelope is โˆš๐’๐Ÿ๐’„ (๐’•) + ๐’๐Ÿ๐’” (๐’•)
๐’๐’„ (๐’•) ๐’‚๐’๐’… ๐’๐’” (๐’•) are two independent zero mean Gaussian processes
with same variance. The resulting envelope is Rayleigh variable
Option (d)
3. Events A and B are mutually exclusive and have nonzero probability.
Which of the following statement(s) are true?
(a) ๐‘ƒ(๐ด โˆช ๐ต) = ๐‘ƒ(๐ด) + ๐‘ƒ(๐ต)
(c) ๐‘ƒ(๐ด โˆฉ ๐ต) = ๐‘ƒ(๐ด)๐‘ƒ(๐ต)
(d) ๐‘ƒ(๐ต๐ถ ) < ๐‘ƒ(๐ด)
(b) ๐‘ƒ(๐ต๐ถ ) > ๐‘ƒ(๐ด)
[GATE 1988: 2 Marks]
Soln. For mutually exclusive events A and B
๐‘ท(๐‘จ โˆช ๐‘ฉ) = ๐‘ท(๐‘จ) + ๐‘ท(๐‘ฉ)
Option (a)
4. Two resistors R1 and R2 (in ohms) at temperatures
๐‘‡10 ๐พ ๐‘Ž๐‘›๐‘‘ ๐‘‡20 ๐พ respectively, are connected in series. Their equivalent
noise temperature is ________0K.
[GATE 1991: 2 Marks]
Soln.
ฬ… ๐Ÿ๐’ = ๐‘ฝ
ฬ… ๐Ÿ๐’ + ๐‘ฝ
ฬ… ๐Ÿ๐’
๐‘ฝ
๐Ÿ
๐Ÿ
๐Ÿ’๐‘ฒ๐‘ป๐’† ๐‘ฉ(๐‘น๐Ÿ + ๐‘น๐Ÿ ) = ๐Ÿ’๐‘ฒ๐‘ป๐Ÿ ๐‘ฉ๐‘น๐Ÿ + ๐Ÿ’๐‘ฒ๐‘ป๐Ÿ ๐‘ฉ๐‘น๐Ÿ
๐‘ป๐’† (๐‘น๐Ÿ + ๐‘น๐Ÿ ) = ๐‘น๐Ÿ ๐‘ป๐Ÿ + ๐‘น๐Ÿ ๐‘ป๐Ÿ
๐’๐’“ ๐‘ป๐’† = (๐‘น๐Ÿ ๐‘ป๐Ÿ + ๐‘น๐Ÿ ๐‘ป๐Ÿ )/(๐‘น๐Ÿ + ๐‘น๐Ÿ )
Equivalent noise temperature
5. For a random variable โ€˜Xโ€™ following the probability density function,
p(x), shown in figure, the mean and the variance are, respectively
p(x)
1/4
-1
(a) 1/2 and 2/3
(b) 1 and 4/3
0
3
x
(c) 1 and 2/3
(d) 2 and 4/3
[GATE 1992: 2 Marks]
Soln. Mean or average of any random variable is known as expected value
of random variable X
โˆž
๐‘ด๐’†๐’‚๐’ = ๐๐‘ฟ = ๐‘ฌ[๐‘ฟ] = โˆซ ๐’™๐‘ท๐‘ฟ (๐’™)๐’…๐’™
โˆ’โˆž
๐Ÿ‘
๐Ÿ‘
๐Ÿ
๐Ÿ ๐’™๐Ÿ
= โˆซ ๐’™ ๐’…๐’™ = [ ]
๐Ÿ’
๐Ÿ’ ๐Ÿ ๐Ÿ
โˆ’๐Ÿ
=
๐Ÿ ๐Ÿ–
[ ]=๐Ÿ
๐Ÿ’ ๐Ÿ
โˆž
๐‘ฝ๐’‚๐’“๐’Š๐’‚๐’๐’„๐’† = ๐ˆ๐Ÿ๐’™ = ๐‘ฌ[(๐‘ฟ โˆ’ ๐๐‘ฟ )] = โˆซ (๐’™ โˆ’ ๐๐‘ฟ )๐Ÿ ๐‘ท๐‘ฟ (๐’™)๐’…๐’™
โˆ’โˆž
๐Ÿ‘
= โˆซ(๐’™ โˆ’ ๐Ÿ)๐Ÿ
โˆ’๐Ÿ
๐’…๐’™
๐Ÿ’
๐Ÿ‘
๐Ÿ
= โˆซ(๐’™๐Ÿ + ๐Ÿ โˆ’ ๐Ÿ๐’™)๐’…๐’™
๐Ÿ’
โˆ’๐Ÿ
๐Ÿ‘
๐Ÿ ๐’™๐Ÿ‘
๐Ÿ๐’™๐Ÿ
= [ +๐’™โˆ’
]
๐Ÿ’ ๐Ÿ‘
๐Ÿ โˆ’๐Ÿ
=
๐Ÿ’
๐Ÿ‘
Option (b)
6. The auto-correlation function of an energy signal has
(a) no symmetry
(c) odd symmetry
(b) conjugate symmetry
(d) even symmetry
[GATE 1996: 2 Marks]
Soln. The auto correlation is the correlation of a function with itself. If the
function is real, the auto correlation function has even symmetry.
๐‘น๐‘ฟ (๐‰) = ๐‘น๐‘ฟ (โˆ’๐‰)
The autocorrelation function has conjugate symmetry
๐‘น๐‘ฟ (๐‰) = ๐‘นโˆ—๐‘ฟ (๐‰)
Option (b) and (d)
7. The power spectral density of a deterministic signal is given by
[sin(๐‘“)/๐‘“]2 , where โ€˜fโ€™ is frequency the autocorrelation function of this
signal in the time domain is
(a) a rectangular pulse
(c) a sine pulse
(b) a delta function
(d) a triangular pulse
[GATE 1997: 2 Marks]
Soln. The Fourier transform of autocorrelation function ๐‘น๐‘ฟ (๐‰)
โˆž
๐Ÿ
=
โˆซ ๐‘ญ(๐Ž) ๐‘ญโˆ— (๐Ž)๐’†๐’‹๐Ž๐‰ ๐’…๐Ž
๐Ÿ๐…
โˆ’โˆž
โˆž
๐Ÿ
๐‘น๐‘ฟ (๐‰) =
โˆซ |๐‘ญ(๐Ž)|๐Ÿ ๐’†๐’‹๐Ž๐‰ ๐’…๐Ž
๐Ÿ๐…
โˆ’โˆž
๐‘น๐‘ฟ (๐‰) = ๐‘ญโˆ’๐Ÿ [|๐‘ญ(๐Ž)|๐Ÿ ]
= Fourier inverse of power spectral density.
The auto correlation function and power spectral density make the
Fourier transfer pair
๐‘น๐‘ฟ (๐‰) โ†” ๐‘ฎ๐‘ฟ (๐Ž)
๐‘น๐‘ฟ (๐‰) = ๐‘ญ
โˆ’๐Ÿ
๐’”๐’Š๐’ ๐’‡ ๐Ÿ
[
]
๐’‡
Inverse Fourier transform of square of sinc function is always a
triangular signal in time domain
Option (d)
8. A probability density function is given by ๐‘ƒ(๐‘ฅ) = ๐พ ๐‘’๐‘ฅ๐‘(โˆ’๐‘ฅ 2 /2), โˆ’โˆž <
๐‘ฅ < โˆž. The value of K should be
(a)
1
โˆš2๐œ‹
(b) โˆš
1
(c) โˆš๐œ‹
2
2
๐œ‹
(d)
1
๐œ‹ โˆš2
[GATE 1998: 1 Mark]
Soln. Gaussian Probability density of a random variable X is given by
๐‘ท๐‘ฟ (๐’™) =
๐Ÿ
โˆ’[
โˆš๐Ÿ๐…๐ˆ๐Ÿ
๐’†
(๐’™โˆ’๐)๐Ÿ
]
๐Ÿ๐ˆ๐Ÿ
When ๐ˆ = ๐Ÿ ๐’‚๐’๐’… ๐ = ๐ŸŽ (zero mean)
๐‘ท๐‘ฟ (๐’™) =
โˆ’๐’™๐Ÿ
๐Ÿ
๐Ÿ
โˆš๐Ÿ๐…
๐’†
โˆ’๐’™๐Ÿ
๐Ÿ
๐‘ฎ๐’Š๐’—๐’†๐’ ๐‘ท(๐’™) = ๐’Œ๐’†
๐‘บ๐’, ๐’Œ =
๐Ÿ
โˆš๐Ÿ๐…
Option (a)
9. The amplitude spectrum of a Gaussian pulse is
(a) uniform
(c) Gaussian
(b) a sine function
(d) an impulse function
[GATE 1998: 1 Mark]
Soln. The Fourier transform of a Gaussian signal in time domain is also
Gaussian signal in the frequency domain
๐Ÿ
๐’†โˆ’๐…๐’• โ†” ๐’†โˆ’๐…๐’•
๐Ÿ
Option (c)
10. The ACF of a rectangular pulse of duration T is
(a) a rectangular pulse of duration T
(b) a rectangular pulse of duration 2T
(c) a triangular pulse of duration T
(d) a triangular pulse of duration 2T
[GATE 1998: 1 Mark]
Soln. Autocorrelation function of a rectangular pulse of duration T is a
triangular pulse of duration 2T
The autocorrelation function is an even function of ๐‰
Option (d)
11. The probability density function of the envelope of narrow band
Gaussian noise is
(a) Poisson
(c) Rayleigh
(b) Gaussian
(d) Rician
[GATE 1998: 1 Mark]
Soln. The Probability density function of the envelope of narrowband
Gaussian noise is Rayleigh.
Option (c)
12. The PDF of a Gaussian random variable X is given by
โˆ’(๐‘ฅโˆ’4)2
1
๐‘ƒ๐‘‹ (๐‘ฅ) =
๐‘’ 18
3โˆš2๐œ‹
The probability of the event {X=4} is
(a)
(b)
1
2
(c) 0
(d)
1
3โˆš2๐œ‹
1
4
[GATE 2001: 1 Mark]
Soln. The probability distribution function of a Gaussian random variable
X is
๐‘ท๐‘ฟ (๐’™) =
๐Ÿ
๐Ÿ‘โˆš๐Ÿ๐…
๐’†
โˆ’(๐‘ฟโˆ’๐Ÿ’)๐Ÿ
๐Ÿ๐Ÿ–
The probability of a Gaussian random variable is defined for the
interval and not at a point. So at X = 4, it is zero
Option (c)
13. A 1 mW video signal having a bandwidth of 100 MHz is transmitted to a
receiver through a cable that has 40 dB loss. If the effective one-sided
noise spectral density at the receiver is 10-20 Watt/Hz, then the signal-tonoise ratio at the receiver is
(a) 50 dB
(c) 40 dB
(b) 30 dB
(d) 60 dB
[GATE 2004: 2 Marks]
Soln. Signal power = ๐‘ท๐‘บ = ๐Ÿ๐’Ž๐’˜
Noise power = ๐‘ท๐‘ต = ๐‘ต๐ŸŽ ๐‘ฉ
๐‘ต๐ŸŽ = Noise spectral density = ๐Ÿ๐ŸŽโˆ’๐Ÿ๐ŸŽ
B = bandwidth = 100 MHz
๐‘ท๐‘บ
๐Ÿ๐ŸŽโˆ’๐Ÿ‘
๐‘บ๐‘ต๐‘น =
=
๐‘ท๐‘ต ๐Ÿ๐ŸŽโˆ’๐Ÿ๐ŸŽ × ๐Ÿ๐ŸŽ๐ŸŽ × ๐Ÿ๐ŸŽ๐Ÿ”
= ๐Ÿ๐ŸŽ๐Ÿ— = ๐Ÿ—๐ŸŽ๐’…๐‘ฉ
Cable loss = 40 dB
SNR at receiver = 90 โ€“ 40
= 50 dB
Option (a)
14.A random variable X with uniform density in the interval 0 to 1 is
quantized as follows:
If 0 โ‰ค ๐‘‹ โ‰ค 0.3
๐‘ฅ๐‘ž = 0
If 0.3 < ๐‘‹ โ‰ค 1,
๐‘ฅ๐‘ž = 0.7
Where ๐‘ฅ๐‘ž is the quantized value of X
The root-mean square value of the quantization noise is
(a) 0.573
(c) 2.205
(b) 0.198
(d) 0.266
[GATE 2004: 2 Marks]
Soln.
1
0
x
1
๐ŸŽ โ‰ค ๐‘ฟ โ‰ค ๐ŸŽ. ๐Ÿ‘
๐’™๐’’ = ๐ŸŽ
๐ŸŽ. ๐Ÿ‘ โ‰ค ๐‘ฟ โ‰ค ๐Ÿ
๐’™๐’’ = ๐ŸŽ. ๐Ÿ•
๐’™๐’’ is the quantized value of random variable X.
Mean square value of the quantization noise
๐Ÿ
= ๐‘ฌ [(๐‘ฟ โˆ’ ๐’™๐’’ ) ]
๐Ÿ
๐Ÿ
= โˆซ(๐’™ โˆ’ ๐’™๐’’ ) ๐’‡๐‘ฟ (๐’™)๐’…๐’™
๐ŸŽ
๐ŸŽ.๐Ÿ‘
๐Ÿ
= โˆซ (๐’™ โˆ’ ๐ŸŽ)๐Ÿ ๐’…๐’™ + โˆซ(๐’™ โˆ’ ๐ŸŽ. ๐Ÿ•)๐Ÿ ๐’…๐’™
๐ŸŽ
๐ŸŽ.๐Ÿ‘
๐Ÿ
๐ŸŽ.๐Ÿ‘
๐’™๐Ÿ‘
๐Ÿ. ๐Ÿ’
= [ ] + โˆซ (๐’™๐Ÿ + ๐ŸŽ. ๐Ÿ’๐Ÿ— โˆ’
๐’™) ๐’…๐’™
๐Ÿ‘ ๐ŸŽ
๐Ÿ
๐ŸŽ.๐Ÿ‘
๐ˆ๐Ÿ = ๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ—
Root mean square value of the quantization noise
๐ˆ = โˆš๐ŸŽ. ๐ŸŽ๐Ÿ‘๐Ÿ— = ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ–
Option (b)
15. Noise with uniform power spectral density of ๐‘0 (๐‘Š/๐ป๐‘ง) is passed
through a filter ๐ป(๐œ”) = 2๐‘’๐‘ฅ๐‘(โˆ’๐‘—๐œ”๐‘ก๐‘‘ ) followed by an ideal low pass
filter of bandwidth B Hz. The output noise power in Watts is
(a) 2 N0B
(c) 8 N0B
(b) 4 N0B
(d) 16 N0B
[GATE 2005: 2 Marks]
Soln.
The output power spectral density of noise
๐‘ต๐’๐’–๐’• = |๐‘ฏ(๐Ž)|๐Ÿ ๐‘ต๐’Š
= 4 N0
The output noise power ๐‘ท๐‘ต = ๐Ÿ’๐‘ต๐ŸŽ ๐‘ฉ
The output power ๐‘ท๐‘ต = ๐Ÿ’๐‘ต๐ŸŽ ๐‘ฉ
Option (b)
16. An output of a communication channel is a random variable v with the
probability density function as shown in the figure. The mean square
value of v is
p(v)
k
0
v
4
(a) 4
(b) 6
(c) 8
(d) 9
[GATE 2005: 2 Marks]
Soln. Area under the probability density function = 1
So,
๐Ÿ
๐Ÿ
×๐Ÿ’×๐’Œ=๐Ÿ
๐’Œ=
๐Ÿ
๐Ÿ
The mean square value of the random variable X
๐Ÿ’
๐‘ฌ[๐‘ฟ๐Ÿ ] = โˆซ ๐’™๐Ÿ ๐’‡๐‘ฟ (๐’™)๐’…๐’™
๐ŸŽ
๐Ÿ’
๐’™
= โˆซ ๐’™๐Ÿ . ๐’…๐’™
๐Ÿ–
๐ŸŽ
๐Ÿ’
๐’™๐Ÿ’
=
|
๐Ÿ–×๐Ÿ’ ๐ŸŽ
=
๐Ÿ’๐Ÿ’
๐Ÿ–×๐Ÿ’
=๐Ÿ–
Option (c)
๐’€ = ๐’Ž๐’™ + ๐‘ช =
๐’Œ
๐’™
๐Ÿ’
Common Data for Questions 20 and 21
Asymmetric three-level midtread quantizer is to be designed assuming
equiprobable occurrence of all quantization levels.
17. If the probability density function is divided into three regions as shown
in the figure, the value of a in the figure is
1/4
Region 1
1/8
Region 2
Region 3
-a
-3
-1
(a) 1/3
(b) 2/3
+a
X
+1
+3
(c) 1/2
(d) 1/4
[GATE 2005: 2 Marks]
Soln. The area under the Pdf curve must be unity. All three regions are
๐Ÿ
equi -probable, thus area under each region must be .
๐Ÿ‘
Area of region ๐Ÿ = ๐Ÿ๐’‚ ×
๐Ÿ
๐Ÿ’
๐Ÿ๐’‚ ๐Ÿ
๐Ÿ
= ๐’๐’“ ๐’‚ =
๐Ÿ’
๐Ÿ‘
๐Ÿ‘
Option (c)
18. The quantization noise power for the quantization region between โ€“a and
+a in the figure is
(a)
(b)
4
81
1
9
(c)
(d)
5
81
2
81
[GATE 2005: 2 Marks]
Soln. The quantization noise power for the region between โ€“a and +a in the
above figure is
๐’‚
๐’‚
๐Ÿ
๐‘ต๐’’ = โˆซ ๐’™๐Ÿ ๐‘ท(๐‘ฟ) ๐’…๐’™ = ๐Ÿ โˆซ ๐’™๐Ÿ ๐’…๐’™
๐Ÿ’
โˆ’๐’‚
๐ŸŽ
๐’‚
๐Ÿ ๐’™๐Ÿ‘
= [ ]
๐Ÿ’ ๐Ÿ‘ ๐ŸŽ
๐Ÿ ๐’‚๐Ÿ‘ ๐’‚๐Ÿ‘
= ×
=
๐Ÿ’ ๐Ÿ‘
๐Ÿ”
๐’‚=
๐‘บ๐’,
๐‘ต๐’’ =
๐Ÿ
๐Ÿ‘
๐Ÿ๐Ÿ‘
๐Ÿ’
=
๐Ÿ๐Ÿ• × ๐Ÿ” ๐Ÿ–๐Ÿ
Option (a)
19. A zero-mean white Gaussian noise is passed through an ideal lowpass
filter of bandwidth 10 KHz. The output is then uniformly sampled with
sampling period ๐‘ก๐‘† = 0.03 msec. The samples so obtained would be
(a) correlated
(c) uncorrelated
(b) statistically independent
(d) orthogonal
[GATE 2006: 2 Marks]
Soln. White noise contains all frequency components, but the phase
relationship of the components is random. When white noise is
sampled, the samples are uncorrelated. If white noise is Gaussian, the
samples are statistically independent
Option (b)
Related documents