Download Carboxylic Acids - GCG-42

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Carboxylic Acids
SANTOSH
CHEMISTRY DEPT
Carboxylic acids:
R-COOH, R-CO2H,
O
R C
OH
Common names:
HCO2H
formic acid
CH3CO2H
acetic acid
CH3CH2CO2H
propionic acid
CH3CH2CH2CO2H
butyric acid
CH3CH2CH2CH2CO2H
valeric acid
5 4 3 2 1
C—C—C—C—C=O
δ γ β α
Br
CH3CH2CH2CHCOOH
 bromovaleric acid
used in common names
CH3
CH3CHCH2COOH
 -methylbutyric acid
isovaleric acid
COOH
benzoic acid
COOH
CH3
COOH
COOH
CH3
CH3
o-toluic acid
m-toluic acid
p-toluic acid
IUPAC nomenclature for carboxylic acids:
parent chain = longest, continuous carbon chain that
contains the carboxyl group  alkane, drop –e, add –oic
acid
HCOOH
methanoic acid
CH3CO2H
ethanoic acid
CH3CH2CO2H
propanoic acid
CH3
CH3CHCOOH
2-methylpropanoic acid
Br
CH3CH2CHCO2H
2-bromobutanoic acid
Dicarboxylic acids
HOOC-COOH
oxalic acid
HO2C-CH2-CO2H
malonic acid
HO2C-CH2CH2-CO2H
succinic acid
HO2C-CH2CH2CH2-CO2H
glutaric acid
HOOC-(CH2)4-COOH
adipic acid
HOOC-(CH2)5-COOH
pimelic acid
CO2H
CO2H
CO2H
CO2H
CO2H
CO2H
phthalic acid
H
H
C
C
isophthalic acid
terephthalic acid
COOH
H
COOH
HOOC
maleic acid
C
C
COOH
H
fumaric acid
salts of carboxylic acids:
name of cation + name of acid: drop –ic acid, add –ate
CH3CO2Na
sodium acetate or sodium ethanoate
CH3CH2CH2CO2NH4
ammonium butyrate
ammonium butanoate
(CH3CH2COO)2Mg
magnesium propionate
magnesium propanoate
Physical Properties:
polar + hydrogen bond  relatively high mp/bp
water insoluble
exceptions: four carbons or less
acidic
turn blue litmus  red
soluble in 5% NaOH
RCO2H + NaOH  RCO2-Na+ + H2O
stronger
stronger
weaker
weaker
acid
base
base
acid
• Two molecules of a carboxylic acid can hydrogen bond together.
O
CH3
H O
C
C
O H
O
CH3
RCO2H
RCO2-
covalent
water insoluble
ionic
water soluble
Carboxylic acids are insoluble in water, but soluble in 5%
NaOH.
1. Identification.
2. Separation of carboxylic acids from basic/neutral organic
compounds.
The carboxylic acid can be extracted with aq. NaOH and
then regenerated by the addition of strong acid.
General Methods of preparation of Carboxylic Acids:
1. oxidation of 1o alcohols:
CH3CH2CH2CH2-OH + CrO3  CH3CH2CH2CO2H
n-butyl alcohol
butyric acid
1-butanol
butanoic acid
CH3
CH3
CH3CHCH2-OH + KMnO4  CH3CHCOOH
isobutyl alcohol
isobutyric
acid
2-methyl-1-propanol`
2-methylpropanoic
acid
2. Oxidation of alkylbenzenes:
CH3
KMnO4, heat
COOH
toluene
CH3
benzoic acid
COOH
KMnO4, heat
note: aromatic acids
only!
HOOC
H3C
terephthalic acid
p-xylene
KMnO4, heat
CH2CH3
ethylbenzene
COOH + CO2
benzoic acid
3. Carbonation of Grignard Reagents:
O
R MgX +
CO2
R C O
ether
( R-Li )
H3O+
O
R C OH
+ MgX(OH)
+
MgX
CH3
CH3
Mg
CH3
CO2
Br
H+
MgBr
COOH
p-toluic acid
Br2, hv
CH3
Mg
CH2Br
CH2MgBr
CO2
H+
CH2 COOH
phenylacetic acid
Hydrolysis of Nitriles
R CH2 Cl
_
+ : C N:
SN2
DMSO
R CH2 C N
H2SO4
+ Cl
H 2O
heat
O
R CH2 C OH
+
+ NH4
CH3
Br2, hv
NaCN
CH2Br
toluene
CH2 CN
H2O, H+, heat
CH2 COOH
phenylacetic acid
KCN
CH3CH2CH2CH2CH2CH2-Br
CH3CH2CH2CH2CH2CH2-CN
1-bromohexane
H2O, H+, heat
CH3CH2CH2CH2CH2CH2-COOH
heptanoic acid
CH2OH
KMnO4
CH3
KMnO4, heat
CO2H
Br
Mg
MgBr
C N
H2O, H+, heat
CO2; then H+
SYNTHESIS OF CARBOXYLIC ACIDS
R C C R
R
R
H
KMnO4
H
DIBAL or
Rosenmund
O
KMnO4
CrO3
H2SO4
O
CrO3
H2SO4
R C OH
CO2
H2O
R C Cl
O
H2SO4
H2O
R C OR
R
Li
or
R Mg X
( benzene = R
sidechain = R’ )
R CH2 OH
KMnO4
O
R C H
R'
or KMnO4
H2O
H2SO4
R C N
NaCN
acetone
KMnO4
R X
Li or
Mg
SOCl2
R OH
R
R
H
H
OH OH
Carboxylate Ion Formation
O
O
R CH2 C OH + NaOH
carboxylic acid
pKa

5
R CH2 C O
carboxylate ion
+
Na
+ H2O
Protonation and Deprotonation
of a Carboxylic Acid
.. H
+ O
..
..
:O
:O
.. R C O
:
..
NaOH
..
R C O
H
..
H2SO4
..
:O
..
R C O
H
H
+
H2SO4
..
R C O
H
..
.. H
:O
+
R C O H
..
equivalent structures
due to resonance
O
X C C OH
O
X C C O
+ H
• Electron-withdrawing Groups:
– strengthen acids
– weaken bases
• Electron-releasing Groups:
– weaken acids
– strengthen bases
+
Substituents with Electron-Withdrawing
Resonance ( - R ) Effects
X
Y
O
C OH
carboxyl
NO2
nitro
alkoxycarbonyl
C N
cyano
acyl
SO3H
sulfo
O
C OR
O
C R
-R substituents strengthen acids and weaken bases
Substituents with Electron-Releasing
Resonance ( + R ) Effects
..
OH
..
hydroxy
..
OR
..
O
..
O C R
..
alkoxy
..
SH
..
mercapto
CH3
methyl
CR3
alkyl
amino
..
NR2
dialkylamino
..
NH2
..
F
.. :
fluoro
..
Br :
..
bromo
..
:
Cl
..
..
I:
..
acyloxy
chloro
iodo
+R substituents weaken acids and strengthen bases
..
Y
Substituents with Electron-Withdrawing
( - I ) Inductive Effects
O
C OH
carboxyl
O
C OR
alkoxycarbonyl
O
C R
OH
acyl
hydroxyl
SH
mercapto
NH2
amino
Cl
chloro
NO2
nitro
C N
cyano
SO3H
sulfonic acid
OR
alkoxy
NR2
dialkylamino
F
fluoro
Br
bromo
I
iodo
+
N(CH3)3
X
trimethylammonium
-I substituents strengthen acids and weaken bases
Substituents with Electron-Releasing
Inductive ( + I ) Effects
R
CH3
methyl
O
CR3
alkyl
O
oxide
C O
carboxylate
+I substituents weaken acids and strengthen bases
O
pKa = 4.75
CH3 C OH
increasing
acidity
3.83
2.34
Br CH2 C OH
2.86
Cl CH2 C OH
2.86
O
O
H O CH2 C OH
3.12
O
O
H2N CH2 C OH
I CH2 C OH
O
O
O2N CH2 C OH
O
1.68
F CH2 C OH
2.66
O
CH3 C OH
O
pKa = 4.75
H C OH
O
O
Cl CH2 C OH
2.86
CH3 C OH
4.75
O
O
Cl CH C OH
3.77
1.29
CH3 CH2 C OH
4.88
Cl
O
CH3 CH C OH
Cl O
Cl
C C OH
0.65
4.86
CH3
Cl
CH3 O
CH3 C
CH3
C OH
5.05
COOH
Cl
2.16
ortho
COOH
3.82
3.47
meta
meta
NO2
COOH
Cl
NO2
ortho
COOH
Cl
COOH
pKa = 2.92
COOH
3.98
para
O2N
Benzoic Acid: pKa = 4.19
para
3.41
COOH
COOH
4.08
4.06
OCH3
OH
COOH
COOH
CH3 O
4.46
4.48
HO
COOH
Benzoic Acid: pKa = 4.19
2.97
OH
Chemical Properties of Carboxylic Acids:
1. as acids
2. conversion into functional derivatives
a)  acid chlorides
b)  esters
c)  amides
3. reduction
4. alpha-halogenation
5. EAS
1) Salt formation:
a) with active metals
RCO2H + Na  RCO2-Na+ + H2(g)
b) with bases
RCO2H + NaOH  RCO2-Na+ + H2O
c) relative acid strength?
CH4 < NH3 < HCCH < ROH < HOH < H2CO3 < RCO2H < HF
d) quantitative
HA + H2O  H3O+ + A-
Ka = [H3O+] [A-] / [HA]
ionization in water
2) Formation of acid chlorides:
O
R C
OH
SOCl2
O
R C
Cl
or PCl3
orPCl5
CO2H + SOCl2
O
CH3CH2CH2 C
OH
COCl
PCl3
O
CH3CH2CH2 C
Cl
3) Formation of esters:
“direct” esterification:
H+
RCOOH + R´OH  RCO2R´ + H2O
-reversible and often does not favor the ester
-use an excess of the alcohol or acid to shift equilibrium
-or remove the products to shift equilibrium to completion
“indirect” esterification:
RCOOH + PCl3  RCOCl + R´OH  RCO2R´
-convert the acid into the acid chloride first; not reversible
O
C
OH
H+
+
CH3OH
SOCl2
O
C
Cl
CH3OH
O
+ H2O
C
O CH3
4) Formation of amides:
“indirect” only.
RCOOH + SOCl2  RCOCl + NH3  RCONH2
amide
O
PCl3
OH
3-Methylbutanoic acid
O
NH3
Cl
O
NH2
Directly reacting ammonia with a carboxylic acid results in an
ammonium salt:
RCOOH + NH3  RCOO-NH4+
acid
base
O
C
OH
PCl3
O
C
Cl
NH3
O
C
NH2
amide
NH3
O
C
O
NH4
ammonium salt
5) Reduction:
RCO2H + LiAlH4; then H+  RCH2OH
1o alcohol
LiAlH4
H+
CH3CH2CH2CH2CH2CH2CH2COOH
Octanoic acid
(Caprylic acid)
CH3CH2CH2CH2CH2CH2CH2CH2OH
1-Octanol
Carboxylic acids resist catalytic reduction under normal
conditions.
RCOOH + H2, Ni  No Reaction (NR)
O
CH2 C
OH
H2, Pt
LiAlH4
H+
CH2CH2OH
NR
6) Halogenation of alkyl groups (Hell-Volhard-Zelinsky
reaction):
RCH2COOH + X2, P  RCHCOOH + HX
X
α-haloacid
X2 = Cl2, Br2
CH3CH2CH2CH2COOH
+
Br2,P
pentanoic acid
COOH
Br2,P
NR (no alpha H)
CH3CH2CH2CHCOOH
Br
2-bromopentanoic acid
RCH2COOH + Br2,P
RCHCOOH + HBr
+
H
n
he
t
;
H
O
Na
Br
NH3
RCHCOOH
RCHCOOH
NH2
OH
KOH(alc)
RCH2CHCOOH
Br
then H+
RCH=CHCOOH
aminoacid
5) Aromatic Substitution:
(-COOH is deactivating and meta- directing)
CO2H
HNO3,H2SO4
NO2
CO2H
CO2H
H2SO4,SO3
SO3H
CO2H
benzoic acid
Br2,Fe
Br
CH3Cl,AlCl3
NR
Related documents