Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Carboxylic Acids SANTOSH CHEMISTRY DEPT Carboxylic acids: R-COOH, R-CO2H, O R C OH Common names: HCO2H formic acid CH3CO2H acetic acid CH3CH2CO2H propionic acid CH3CH2CH2CO2H butyric acid CH3CH2CH2CH2CO2H valeric acid 5 4 3 2 1 C—C—C—C—C=O δ γ β α Br CH3CH2CH2CHCOOH bromovaleric acid used in common names CH3 CH3CHCH2COOH -methylbutyric acid isovaleric acid COOH benzoic acid COOH CH3 COOH COOH CH3 CH3 o-toluic acid m-toluic acid p-toluic acid IUPAC nomenclature for carboxylic acids: parent chain = longest, continuous carbon chain that contains the carboxyl group alkane, drop –e, add –oic acid HCOOH methanoic acid CH3CO2H ethanoic acid CH3CH2CO2H propanoic acid CH3 CH3CHCOOH 2-methylpropanoic acid Br CH3CH2CHCO2H 2-bromobutanoic acid Dicarboxylic acids HOOC-COOH oxalic acid HO2C-CH2-CO2H malonic acid HO2C-CH2CH2-CO2H succinic acid HO2C-CH2CH2CH2-CO2H glutaric acid HOOC-(CH2)4-COOH adipic acid HOOC-(CH2)5-COOH pimelic acid CO2H CO2H CO2H CO2H CO2H CO2H phthalic acid H H C C isophthalic acid terephthalic acid COOH H COOH HOOC maleic acid C C COOH H fumaric acid salts of carboxylic acids: name of cation + name of acid: drop –ic acid, add –ate CH3CO2Na sodium acetate or sodium ethanoate CH3CH2CH2CO2NH4 ammonium butyrate ammonium butanoate (CH3CH2COO)2Mg magnesium propionate magnesium propanoate Physical Properties: polar + hydrogen bond relatively high mp/bp water insoluble exceptions: four carbons or less acidic turn blue litmus red soluble in 5% NaOH RCO2H + NaOH RCO2-Na+ + H2O stronger stronger weaker weaker acid base base acid • Two molecules of a carboxylic acid can hydrogen bond together. O CH3 H O C C O H O CH3 RCO2H RCO2- covalent water insoluble ionic water soluble Carboxylic acids are insoluble in water, but soluble in 5% NaOH. 1. Identification. 2. Separation of carboxylic acids from basic/neutral organic compounds. The carboxylic acid can be extracted with aq. NaOH and then regenerated by the addition of strong acid. General Methods of preparation of Carboxylic Acids: 1. oxidation of 1o alcohols: CH3CH2CH2CH2-OH + CrO3 CH3CH2CH2CO2H n-butyl alcohol butyric acid 1-butanol butanoic acid CH3 CH3 CH3CHCH2-OH + KMnO4 CH3CHCOOH isobutyl alcohol isobutyric acid 2-methyl-1-propanol` 2-methylpropanoic acid 2. Oxidation of alkylbenzenes: CH3 KMnO4, heat COOH toluene CH3 benzoic acid COOH KMnO4, heat note: aromatic acids only! HOOC H3C terephthalic acid p-xylene KMnO4, heat CH2CH3 ethylbenzene COOH + CO2 benzoic acid 3. Carbonation of Grignard Reagents: O R MgX + CO2 R C O ether ( R-Li ) H3O+ O R C OH + MgX(OH) + MgX CH3 CH3 Mg CH3 CO2 Br H+ MgBr COOH p-toluic acid Br2, hv CH3 Mg CH2Br CH2MgBr CO2 H+ CH2 COOH phenylacetic acid Hydrolysis of Nitriles R CH2 Cl _ + : C N: SN2 DMSO R CH2 C N H2SO4 + Cl H 2O heat O R CH2 C OH + + NH4 CH3 Br2, hv NaCN CH2Br toluene CH2 CN H2O, H+, heat CH2 COOH phenylacetic acid KCN CH3CH2CH2CH2CH2CH2-Br CH3CH2CH2CH2CH2CH2-CN 1-bromohexane H2O, H+, heat CH3CH2CH2CH2CH2CH2-COOH heptanoic acid CH2OH KMnO4 CH3 KMnO4, heat CO2H Br Mg MgBr C N H2O, H+, heat CO2; then H+ SYNTHESIS OF CARBOXYLIC ACIDS R C C R R R H KMnO4 H DIBAL or Rosenmund O KMnO4 CrO3 H2SO4 O CrO3 H2SO4 R C OH CO2 H2O R C Cl O H2SO4 H2O R C OR R Li or R Mg X ( benzene = R sidechain = R’ ) R CH2 OH KMnO4 O R C H R' or KMnO4 H2O H2SO4 R C N NaCN acetone KMnO4 R X Li or Mg SOCl2 R OH R R H H OH OH Carboxylate Ion Formation O O R CH2 C OH + NaOH carboxylic acid pKa 5 R CH2 C O carboxylate ion + Na + H2O Protonation and Deprotonation of a Carboxylic Acid .. H + O .. .. :O :O .. R C O : .. NaOH .. R C O H .. H2SO4 .. :O .. R C O H H + H2SO4 .. R C O H .. .. H :O + R C O H .. equivalent structures due to resonance O X C C OH O X C C O + H • Electron-withdrawing Groups: – strengthen acids – weaken bases • Electron-releasing Groups: – weaken acids – strengthen bases + Substituents with Electron-Withdrawing Resonance ( - R ) Effects X Y O C OH carboxyl NO2 nitro alkoxycarbonyl C N cyano acyl SO3H sulfo O C OR O C R -R substituents strengthen acids and weaken bases Substituents with Electron-Releasing Resonance ( + R ) Effects .. OH .. hydroxy .. OR .. O .. O C R .. alkoxy .. SH .. mercapto CH3 methyl CR3 alkyl amino .. NR2 dialkylamino .. NH2 .. F .. : fluoro .. Br : .. bromo .. : Cl .. .. I: .. acyloxy chloro iodo +R substituents weaken acids and strengthen bases .. Y Substituents with Electron-Withdrawing ( - I ) Inductive Effects O C OH carboxyl O C OR alkoxycarbonyl O C R OH acyl hydroxyl SH mercapto NH2 amino Cl chloro NO2 nitro C N cyano SO3H sulfonic acid OR alkoxy NR2 dialkylamino F fluoro Br bromo I iodo + N(CH3)3 X trimethylammonium -I substituents strengthen acids and weaken bases Substituents with Electron-Releasing Inductive ( + I ) Effects R CH3 methyl O CR3 alkyl O oxide C O carboxylate +I substituents weaken acids and strengthen bases O pKa = 4.75 CH3 C OH increasing acidity 3.83 2.34 Br CH2 C OH 2.86 Cl CH2 C OH 2.86 O O H O CH2 C OH 3.12 O O H2N CH2 C OH I CH2 C OH O O O2N CH2 C OH O 1.68 F CH2 C OH 2.66 O CH3 C OH O pKa = 4.75 H C OH O O Cl CH2 C OH 2.86 CH3 C OH 4.75 O O Cl CH C OH 3.77 1.29 CH3 CH2 C OH 4.88 Cl O CH3 CH C OH Cl O Cl C C OH 0.65 4.86 CH3 Cl CH3 O CH3 C CH3 C OH 5.05 COOH Cl 2.16 ortho COOH 3.82 3.47 meta meta NO2 COOH Cl NO2 ortho COOH Cl COOH pKa = 2.92 COOH 3.98 para O2N Benzoic Acid: pKa = 4.19 para 3.41 COOH COOH 4.08 4.06 OCH3 OH COOH COOH CH3 O 4.46 4.48 HO COOH Benzoic Acid: pKa = 4.19 2.97 OH Chemical Properties of Carboxylic Acids: 1. as acids 2. conversion into functional derivatives a) acid chlorides b) esters c) amides 3. reduction 4. alpha-halogenation 5. EAS 1) Salt formation: a) with active metals RCO2H + Na RCO2-Na+ + H2(g) b) with bases RCO2H + NaOH RCO2-Na+ + H2O c) relative acid strength? CH4 < NH3 < HCCH < ROH < HOH < H2CO3 < RCO2H < HF d) quantitative HA + H2O H3O+ + A- Ka = [H3O+] [A-] / [HA] ionization in water 2) Formation of acid chlorides: O R C OH SOCl2 O R C Cl or PCl3 orPCl5 CO2H + SOCl2 O CH3CH2CH2 C OH COCl PCl3 O CH3CH2CH2 C Cl 3) Formation of esters: “direct” esterification: H+ RCOOH + R´OH RCO2R´ + H2O -reversible and often does not favor the ester -use an excess of the alcohol or acid to shift equilibrium -or remove the products to shift equilibrium to completion “indirect” esterification: RCOOH + PCl3 RCOCl + R´OH RCO2R´ -convert the acid into the acid chloride first; not reversible O C OH H+ + CH3OH SOCl2 O C Cl CH3OH O + H2O C O CH3 4) Formation of amides: “indirect” only. RCOOH + SOCl2 RCOCl + NH3 RCONH2 amide O PCl3 OH 3-Methylbutanoic acid O NH3 Cl O NH2 Directly reacting ammonia with a carboxylic acid results in an ammonium salt: RCOOH + NH3 RCOO-NH4+ acid base O C OH PCl3 O C Cl NH3 O C NH2 amide NH3 O C O NH4 ammonium salt 5) Reduction: RCO2H + LiAlH4; then H+ RCH2OH 1o alcohol LiAlH4 H+ CH3CH2CH2CH2CH2CH2CH2COOH Octanoic acid (Caprylic acid) CH3CH2CH2CH2CH2CH2CH2CH2OH 1-Octanol Carboxylic acids resist catalytic reduction under normal conditions. RCOOH + H2, Ni No Reaction (NR) O CH2 C OH H2, Pt LiAlH4 H+ CH2CH2OH NR 6) Halogenation of alkyl groups (Hell-Volhard-Zelinsky reaction): RCH2COOH + X2, P RCHCOOH + HX X α-haloacid X2 = Cl2, Br2 CH3CH2CH2CH2COOH + Br2,P pentanoic acid COOH Br2,P NR (no alpha H) CH3CH2CH2CHCOOH Br 2-bromopentanoic acid RCH2COOH + Br2,P RCHCOOH + HBr + H n he t ; H O Na Br NH3 RCHCOOH RCHCOOH NH2 OH KOH(alc) RCH2CHCOOH Br then H+ RCH=CHCOOH aminoacid 5) Aromatic Substitution: (-COOH is deactivating and meta- directing) CO2H HNO3,H2SO4 NO2 CO2H CO2H H2SO4,SO3 SO3H CO2H benzoic acid Br2,Fe Br CH3Cl,AlCl3 NR