Download More Proofs Practice Ch - wths

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
More Proofs Practice Ch.2
Honors Geometry
1)
Name_______Key________________
Given: ABC is a right angle
m2  m3
Prove: m1  m3  90
Statements
Reasons
1. ABC is a right angle
1. Given
2. m<ABC = 90
2. Def. of Right Angle
3. mABC  m1  m2
3. Angle Addition Postulate
4. 90 = m<1 + m<2
4. Substitution
5. m<2 = m<3
5. Given
6. m<1 + m<3 = 90
6. Substitution
2)
Given: 1 and 2 form a linear pair
m2  m3  m4  180
Prove: m1  m3  m4
Statements
Reasons
1. 1 and 2 form a linear pair
1. Given
2. <1 and <2 are supplementary
2. Linear Pair Theorem
3. m<1 + m<2 = 180
3. Definition of Supplementary Angles
4. m<2 + m<3+m<4 = 180
4. Given
5. m1  m2  m2  m3  m4
5. Transitive/Substitution
6. m<1 = m<3 + m<4
6. Subtraction
b D:\769814445.doc 5/5/2017
3)
Given: mHGK  mJGL
Prove: m1  m3
Statements
Reasons
1. m<HGK = m<JGL
1. Given
2. m<HGK = m<1 + m<2
2. Angle Addition Postulate
3. m<JGL = m<2+m<3
3. Angle Addition Postulate
4. m1  m2  m2  m3
4. Transitive/Substitution
5. m<1 = m<3
5. Subtraction
4)
Given: ABC  EFG
1  3
Prove: 2  4
Statements
Reasons
1. ABC  EFG
1.Given
2. m<ABC = m<EFG
2. Def. of Congruent Angles
3. mABC  m1  m2
3. Angle Addition Postulate
4. mEFG  m3  m4
4. Angle Addition Postulate
5. m<1 +m<2 = m<3+m<4
5. Transitive Property
6. 1  3
6. Given
7. m<1 = m<3
7. Def. of Congruent Angles
8. m2  m4
8. Subtraction
9. 2  4
9. Def. of Congruent Angles
b D:\769814445.doc 5/5/2017
5)
Given: m1  m3
m2  m4
Prove: mABC  mADC
Statements
Reasons
1. m1  m3
1. Given
2. m2  m4
2. Given
3. m1  m2  m3  m4
3. Addition
4. m<1+m<2 = m<ABC
4. Angle Addition Postulate
5. m<3+m<4 = m<ADC
5. Angle Addition Postulate
6. mABC  mADC
6. Transitive/Substitution
6)
Given: PT  QT
TR  TS
Prove: PR  QS
Statements
Reasons
1. PT  QT
1. Given
2. PT=QT
2. Def. of Congruent Segments
3. TR  TS
3. Given
4. TR = TS
4. Def. of Congruent Segments
5. PT+TR = QT+TS
5. Addition Property
6. PT + TR = PR
6. Segment Addition Postulate
7. QT + TS = QS
7. Segment Addition Postulate
8. PR=QS
8. Transitive/Substitution
9. PR  QS
9. Def. of Congruent Segments
b D:\769814445.doc 5/5/2017
Related documents