Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
L02 Wave Function Based HF Methods 武晓君 (Xiaojun Wu) [email protected] 江俊 (Jun Jiang) [email protected] Study Subjects Atom Molecule Nano-system Surface Interface Solid Information? • • • • • Atomic structure ? Energy ? Evolution/Change ? Electron ? Magnetism, Force, Light, Heat,……? Challenge • How to do simulations with Computers ? – From atomic structure to energy – From the variation of atomic structure to the system energy change Adiabatic Potential Energy Surface • Key Issue: Define atomic position – The location of nucleus and electrons How to define the status of a particle at the Microscopic scale? Matter(de Broglie) wave wavefunction Ψ(x, t) Energy, Momentum, wavelength, frequency x i ~ exp i 2 t exp xp Et Wavefunction: the full description of a particle What is wavefunction ? Wavefunction Ψ(r, t) describe probability amplitude – Born's statistical interpretation Ψ(r, t) the squared modulus of the wave function, | ψ(r,t ) |2, is the probability density of measuring a particle at a given place (or having a given momentum), at a given time. One-particle states in 3d space Wavefunction is the state function, which define all properties of the system What is wavefunction ? Wavefunction Ψ(r, t) describe probability amplitude – Born's statistical interpretation Many particle states in 3d space where ri is the position of the i-th particle in threedimensional space, and t is time. Altogether, this is a complex-valued function of 3N + 1 real variables. Wavefunction is the state function, which define all properties of the system Wavefunction Information ? Electronic wavefunction of the system Electronic wavefunciton Electron Density Differential Electron Density Electronic Wavefunction for excitation Z.Y. Gong, et.al., J. Jiang*, Y. Luo, J. Phys. Chem. A 2016, 120, 3547 Electronic Wavefunction for excitation Metal Organic Framework(MOF): Cu3(BTC)2 Inefficient in visible light absorption Highly efficient in visible photocatalysis (CO2→CH4) Cu3(BTC)2 Cu3(BTC)2 0.4 Cu3(BTC)2@2H2O Cu3(BTC)2 @2H2O Absborance Cu3(BTC)2@CO2+H2O Cu3(BTC)2@2CO2 0.2 0.0 Cu3(BTC)2 @2CO2 400 500 600 Wavelength(nm) 700 Adv. Mater. 2014, 26, 4788. CO2 adsorption—Enhance visible absorption Electron density distribution guide charge flow Vac. EF Semi1 Semi2 EF e- e- e- Metal Semicond-Semicond nanoheterostructure Type I interfacing with Metal Vac. e- e- e- eEF Semi1 Semi2 e- Metal h+ Semicond-(Semicond/Metal) Nanoheterostructure Type II T.T. Zhuang, et.al., J. Jiang*, S.H. Yu*, Angew. Chem. Int. Ed. 2015, 39, 11495 T.T. Zhuang, et.al., J. Jiang*, S.H. Yu*, Angew. Chem. Int. Ed. 2016, 55, 6396 D. Liu, et. al., J. Jiang*, Y.J. Xiong*, Nano Res. 2016, 9, 1590 Design surface/interface differential/polarization charge Ag donate polarization charge to CuO Lower down CO activation barrier Vac WorkFunction Vac Wf= 5.97 eV -e Wf= 4.45eV Ef Ef CuO Cu O Ag (111) Cu O Ag Ag Y. Bai, et. al. W.X. Huang*, J. Jiang*, Y.J.Xiong* J. Am. Chem. Soc. 2014, 136, 14650 Double-transition-atom (Co2) extract polarization chargefrom C2N electro-negativity (2D Material) : promote O2 dsorption and activation X.Y. Li, et. al. J. Jiang*, J. Phys. Chem. Lett. 2016, 7, 1750 Wavefunction: Real Space .vs. Momentum space Ψ(r,t): space distribution • • momentum probability distribution Free particle: | ψ(r) |2 = constant, unified distribution over space momentum has deterministic value: constant Generally, ψ(r ) is a wave packet constituted by the superposition state of plane-wave functions, a series of free particle states with certain momentums x 1 2 1 p 2 p eipx / dp x eipx / dx The position-space and momentumspace wave functions are Fourier transforms of each other The properties of wavefunction? • ψ(r ) contains many free-particle states, each of which has certain momentum, and their coefficient ψ(p ) describes the probability of a certain momentum • State superposition principle: If ψ1, ψ2, …, ψn are possible states of a system, their linear combination is also a possible state. The probability of the ψi state is How to get wavefunction? Simple case: Free particle i xp Et x, t A exp Wave Equation i E t 2 p 2 2 2m x 2m 2 p2 E 2m 2 2 i t 2m x 2 External 2 p2 2 E V V x, t Field V(x) i 2 t 2m 2m x Quantum Mechanics Classical Mechanics (Newton) High Low Velocity Mass Relativity Wave Theory of Light (Huygens) Maxwell’s EM Theory Quantum Theory Quantum Electrodyamics Electricity and Magnetism (Faraday, Ampere, et al.) The most simple & realistic system: Hydrogen or Hydrogen-like atom 2 2 2 2 Ze 2 H N e 2M 2me 40 r me 1 M 1836 central force field V(r) Born-Oppenheim approximation (BO, adiabatic approximation) Frozen Nucleus 2 2 Ze ' Hˆ Tˆe VˆeN e2 2m r 2 2 Ze'2 ( ) ( r ) E ( r ) central force field particle 2m r 2 2 Ze'2 ( ) (r ) E (r ) 2m r (r , , ) R(r )Ylm ( , ) nlm N nl r n, l , m n 1 e r Ylm( , ) (r, , ) Rn,l (r )l , m ( )m ( ) eimφ R (r ) * Rn ,l (r )r dr n , n ' l ,l ' 2 n ', l ' l ', m ' m ( ) * l , m ( ) sin d l ,l ' m , m ' ( ) * m ( )d m , m ' Orbital wavefunction of Hydrogen nm Rn (r )m ( ) m ( ) E 1 n 2 nm (r, , ) n m n principal quantum number, shell 1, 2, 3, 4, … l angular quantum number, subshell 0, 1, 2, 3, …, n-1 m magnetic quantum number, -l, -l+1, …, l-1, l Complex wavefunction nm Rn (r )m ( ) m ( ) Real wavefunction nm Rn (r ) ( )e eimφ m Rn (r ) ( ) cos m m im n m Rn (r ) ( )e Rn (r )m ( ) sin m m im n Atomic Orbital n principal quantum number, shell 1, 2, 3, 4, … l angular quantum number, subshell 0, 1, 2, 3, …, n-1 m magnetic quantum number, -l, -l+1, …, l-1, l • principal quantum number: n (1) n determines orbital energy 2 2 Z Z E n R 2 2 *13.6eV n n l: 0 1 2 3 4 5 6 Shape: s p d f g h i n=1,2,3,* (only for Hydrogen-like system) E2s = E2p = ¼ E1s E3s E3p E1s (2) n with l determine degeneracy n 1 g (2l 1) n 2 l 0 Atomic Orbital n principal quantum number, shell 1, 2, 3, 4, … l angular quantum number, subshell 0, 1, 2, 3, …, n-1 m magnetic quantum number, -l, -l+1, …, l-1, l • Angular quantum number: l (1) l determines orbital shape l: 0 1 2 3 4 5 6 Shape: s p d f g h i (2) l determines orbital magnetic moment e M 2 me e 2 me l (l 1) l (l 1) eh l (l 1)u B 4me Atomic Orbital n principal quantum number, shell 1, 2, 3, 4, … l angular quantum number, subshell 0, 1, 2, 3, …, n-1 m magnetic quantum number, -l, -l+1, …, l-1, l • Magnetic quantum number: m (1) m determines the direction of angular momentum The choice of directions is 2l+1 l=2 Atomic Orbital n principal quantum number, shell 1, 2, 3, 4, … l angular quantum number, subshell 0, 1, 2, 3, …, n-1 m magnetic quantum number, -l, -l+1, …, l-1, l l: 0 1 2 3 4 5 6 Shape: s p d f g h i Most systems contain many particles N-particle system is much more complicated Practical Solutions Semiempirical method Complete Active Space Multiconfiguration SCF (MC-SCF) Configuration Interaction theory CI Hartree-Fock theory Quantum Chemistry Moller-Plesset perturbation theory MP2 Density Functional Theory (DFT) Couple Cluster theory CCSD(T) Approx. I:B-O Separate nucleus and electrons E(R) depends on atom position Potential Energy Surface (PES) http://www.sciencemag.org/content/329/5995/1057/F3.expansion.html 1D PES Multi-Dimen. PES Simpification: Electronic wavefunction:Ψ(r1; r2; …; rn) Cannot be separated How to calculate the wavefunction in the multidimensional space? Approx.II Single-electron Simplify Hamiltonian Single-e Schrodinger eqn: There are no two particles with the same quantum numbers: (n, l, m, s) Here s = ±1/2 is spin quantum number Pauli exclusion principle Many-body wavefunction without interactions? Hartree products(HP many-body wavefunciton) Total energy • Approx. III:Mean-field approximation for the many-body wavefunction: Hartree Approximation: the electrons do not interact explicitly with the others, but each electron interacts with the medium potential given by the other electrons Using the Lagrange’s multipliers method Hartree equations: M N N ZA 1 2 Φ j (j) 2 i ri A A 1 i 1 j 1 j i Variation method: where: 2 1 dτ j Φ i (i) ε i Φ i (i) ri j N 1 N N E Hi J i j 2 i 1 j 1 i 1 j i 1 2 M ZA H i Φ i (i)h i Φ i (i)dτ i Φ i (i) i Φ i (i)dτ i - 1-e integral 2 r A 1 iA 1 2 2 J i j Φ i (1) Φ j (2)dτ 1 dτ 2 r12 -Coulomb 2-e integral - represents the repulsive interactions between two set of classic charge densities described by Φi and Φj • Approx. III:Mean-field approximation for the HP (hartree product) many-body wavefunction: Hartree Approximation: the electrons do not interact explicitly with the others, but each electron interacts with the medium potential given by the other electrons Variation method: N 1 N N E Hi J i j 2 i 1 j 1 i 1 j i where: 1 2 M ZA H i Φ i (i)h i Φ i (i)dτ i Φ i (i) i Φ i (i)dτ i - 1-e integral 2 r A 1 iA J i j Φ 2i (1) 1 2 Φ j (2)dτ 1 dτ 2 r12 -Coulomb 2-e integral - represents the repulsive interactions between two set of classic charge densities described by Φi and Φj Using the Lagrange’s multipliers method Hartree equations: M N N 2 1 Z 1 2 A Φ (i) ε Φ (i) Φ (j) dτ i j i i j 2 i ri A i 1 j1 ri j A 1 j i N ε i Hi Jij j 1 j i - Molecular orbital energy N N -1 N i 1 i 1 j i 1 E i J i j Total energy In order to find Φi we need Φi SCF procedure ρ i (r) Φ i (r) N 2 i-th electron density N ρ tot (r) ρ i (r) Φ i (r) i 1 2 Total electron density i 1 Solution: Self-Consistent Field (SCF) Wavefunction of many electrons Two-electron system: Pauli exclusion principle Another solution: For our two electron problem, we can satisfy the antisymmetry principle by a wavefunction like: Slater wavefunction of N-electrons system Fock, Slater 1930 • Satisfy the antisymmetry principle : exchanging the position of two particles leads to a negative sign on the Determinants • Satisfy the Pauli exclusion principle: SD=0 when two particles hold the same status (same quantum numbers) Hartree-Fock Solution Fock, Slater 1930 E Ψ HΨ SD SD N 1 N N Hi (J i j K i j) 2 i1 j1 i 1 Interaction energy of electrons 1 Hi Φ *i (r)hi Φ i (r)dr Φ *i (r) 2i v i Φ i (r)dr 2 J i j Φ2i (1) 1 2 Φ j (2)dr1 dr2 r12 K i j Φ*i (r1 )Φ*j (r1 ) Coulomb interaction energy 1 Φ i (r2 )Φ j (r2 )dr1 dr2 Exchange energy of electrons with same spi r1 r2 Slater determinant is better than HP (hartree product) exchange operator: 1 K j (1)Φi (1) Φ j (2) Φi (2)dτ 2 Φ j (1) r12 Minimizing the energy by varying the spin orbitals leads to the Hartree-Fock equations: N N 2 1 1 1 2 * v Φ (r) Φ (r' ) Φ (r)dτ Φ (r' )Φ (r' ) Φ j (r)dτ j i i (r) i i i j j i j 2 i r - r' r - r' j1 j 1 Fock operator: N molecular orbital energies: f i h i (J j K j ) j 1 N ε i Φ i f i Φ i H i (J i j K i j ) j 1 Restricted and Unrestricted HF Restricted HF restricted wave-function RHF 1s1s 2 s Φ1(x)=φ1(r)α(ω) Φ2(x)=φ1(r)β(ω) Restricted wave-function for Li atom But: K1s()2s( )≠0 and K1s()2s()=0 1s() and 1s() electrons will experience different potentials so that it will be more convenient to describe the two kind of electrons by different wave-functions Unrestricted HF No restriction on spatial wavefunction for spin orbit Φ1(x)=φα1(r)α(ω) Φ2(x)=φβ1(r)β(ω) UHF 1s 1s 2s Unrestricted wave-function for Li atom iα jα δ ij iβ βj δ i j iα βj S αβ ij UHF solution: possible spin containment Closed Shell System RHF is good RHF and UHF present same results Open Shell System UHF Advantages: efficient with two sets of spatial function Dis-advantage:mixing high-order spin states causing spin contamination How to check and solve ? OK if errors <10% Gaussian software, use iop(5/14)=2 输出 <S2> Recommended Solution Restricted Open-Shell HF (ROHF) Wavefunction is composed of many determinants 1. Good for energy and wavefunction 2. Bad for spin-dependent properties Compare Unrestricted HF (UHF) Wavefunction is composed ofa single determinants 1. Energy: EUHF ≤ ERHF or EROHF 2. Good for spin-dependent properties Hartree-Fock-Roothann Equation Ψ 0 Ψ HF Φ1 (x 1 ) Φ (x ) Ψ SD (r1 , r2 ,..., rN ) (N! )1 /2 1 2 Φ2 (x 1 ) ... Φ2 (x 2 ) ... Φ N (x 1 ) Φ N (x 2 ) Φ1 (x N ) Φ2 (x N ) ... Φ N (x N ) Roothann Linear Combination of Atomic Orbital – Molecular Orbital (LCAO-MO) K i c i 1 i=1,2,...,K {μ} – a set of known functions : atomic basis or plane wave basis set c11 c C 21 ... c K1 FC=SC 1 0 0 2 ... ... 0 0 where ... K ... ... ... 0 0 ... c12 c 22 ... ... c1K ... c 2 K ... ... cK 2 ... c KK Turn HF problem to Matrix problem Density matrix element N /2 P 2 ca c*a a Single-electron Ignore ele-ele interactions Mean Field Koopman’s Theorem The first ionization energy = Energy of HOMO The electron affinity energy = Energy of LUMO HF method Good at predicting geometry Bad at predicting binding energy What will be the next?