Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Organometallics Study Meeting 04/21/2011 H.Mitsunuma 1. Crystal field theory (CFT) and ligand field theory (LFT) CFT: interaction between positively charged metal cation and negative charge on the non-bonding electrons of the ligand LFT: molecular orbital theory (back donation...etc) Octahedral (figure 9-1a) d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. ligand field splitting parameter ( 1) high oxidation state 2) 3d<4d<5d 3) spectrochemical series 0): energy between eg orbital and t2g orbital I-< Br-< S2-< SCN-< Cl-< N3-, F-< (H2N)2CO, OH-< ox, O2-< H2O< NCS- <C5H5N, NH3< H2NCH2CH2NH2< bpy, phen< NO2< CH3-, C6H5-< CN- <CO cf) pairing energy: energy cost of placing an electron into an already singly occupied orbital Low spin: If 0 is large, then the lower energy orbitals(t2g) are completely filled before population of the higher orbitals(eg) High spin: If 0 is small enough then it is easier to put electrons into the higher energy orbitals than it is to put two into the same low-energy orbital, because of the repulsion resulting from matching two electrons in the same orbital ex) (t2g)3(eg)n (n= 1,2) Tetrahedral (figure 9-1b), Square planar (figure 9-1c) LFT (figure 9-3, 9-4) Cl-, Br-: lower 0 (figure 9-4 a) CO: higher 0 (figure 9-4 b) 2. Ligand metal complex alkyl hydride halogen alkoxide MR MH M X M OR O M hapticity formal chargeelectron donation metal complex R M 1 1 -1 -1 2 2 1 1 -1 -1 2 2 acyl 1 -1 2 1 -alkenyl 1 -1 2 1 -allyl 1 -1 2 acetylide 1 -1 2 carbene 1 0 2 carbene 1 -2 4 M M R R M R R M R M carbyne 1 -3 6 M CO carbonyl 1 0 2 M 2 2 0 2 M 2 -alkyne 2 0 2 3 -allyl 3 -1 4 -diene 4 0 4 5 -1 6 M M M -alkene 4 5 -cyclo pentadienyl M H M M X M M R O M M O C M M R2 C M M O C MMM R C M MM hapticity formal chargeelectron donation 6 -arene 6 0 6 -hydride 1 -1 2 -halogen 1 -1 4 -alkoxide 1 -1 4 -carbonyl 1 0 2 -alkylidene 1 -2 4 3 0 2 3 -3 6 -carbonyl 1 -alkylidine 1 1 3. d-electron (OC)4Co Co(CO)4 Mo(IV): d2 = 2e 2(C5H5)-: 2 x 6e = 12e 2H-: 2 x 2e = 4e Mo H H Co(0), d9, 18e Co(0): d9 = 9e 4(CO): 4 x 2e = 8e Co-Co: 1 x 2e = 2e Mo(IV), d2, 18e M(valency), [d-electron of M(0)] - [formal charge], [d-electron of metal] + [electron of ligand] Early transition metal: smaller d-electron number (group 4, 5...) Late transition metal: larger d-electron number (group 9, 10...) 4. 18-electron rule Valence shells of transition metal consists of nine valence orbitals (s, p, d), which collectively can accommodate 18 electrons (same electron configuration as noble gas) either as nonbinding electron pairs or as bonding electron pairs. 18-electron complex: coordinatively saturated complex non-18-electron complex: coordinatively unsaturated complex Violations to the 18-electron rule Octahedral [Co(H2O)2+6]2+ (19e) [Ni(en)3] (20e) V(CO)6 (17e) W(CH3)6 (12e) late transition metal: small 0 occupation of eg Square planar [(C6H5)3P]2PdX2 (16e) [(C6H5)3P]2Ir(CO)X (16e) early transition metal instability of dx2-y2 stable alkyl complexes Zr(CH2C6H5)4 W(CH3)6 W(VI), d0, 12e Zr(IV), d4, 8e 5. -bonding ligand 5.1 alkyl complex Ti[CH2C(CH 3)3]4 Ti(IV), d0, 8e M-C bond: 130~300 kJmol-1 -hydride elimination Cr Fe 4 Cr(IV), d2, 10e 4 Fe(IV), d4, 12e L2Pt Pt(II), d8, 16e synthesis of alkyl complexes 1) Metathetical exchange using a carbon nucleophile PR3 Cl Pt Cl PR3 + PR3 n-Bu Pt n-Bu PR3 2 n-BuLi Pt(II), d8, 16e Pt(II), d8, 16e 2) Metal centered nucleophile - OC Fe + OC Na+ 3) Oxidative addition Ph3P CO Ir Br PPh3 + MeCl Ir(I), d8, 16e Me Ph3P CO Ir Br PPh3 Cl Ir(III), d8, 18e 4) Insertion - Br OC Fe OC Fe(0), d8, 18e Fe(II), d6, 18e PR3 Cl Pt H PR3 + CH2=CH2 Pt(II), d8, 16e PR3 Cl Pt Et PR3 Pt(II), d8, 16e 5.2 hydride complex M-H bond: 240~350 kJmol-1 synthesis of hydride complexes 1) Metal halide + reductant 3) Oxidative addition RuCl2(PPh3)3 + NaBH4 + PPh3 Ru(II), d6, 16e 2) Protonation Cp2WH2 + H+ W(IV), d2, 18e [Co(CO4)]- + H+ Co(-I), d10, 18e [Cp2WH3]+ W(VI), d0, 18e HCo(CO4) Co(I), d8, 18e RuH2(PPh3)4 Ru(II), d6, 18e IrCl(CO)(PPh3)2 + H2 8 Ir(I), d , 16e RhCl(PPh3)3 + H2 Rh(I), d8, 16e IrH2Cl(CO)(PPh3)2 Ir(III), d6, 18e RhH2Cl(PPh3)3 Rh(III), d6, 18e 2 4) Ortho metallation, cyclo metallation 5) -hydride elimination RuH2(PPh3)4 + 2KCl + 2 acetone Ru(II), d6, 18e RuCl2(PPh3)4 + 2KOCH(CH3)2 Ru(II), d6, 18e PMe2 PMe3 W H PMe PMe3 3 W[P(CH3)3]6 W(0), d6, 18e W(II), d4, 16e Reactivity of hydride complex 1) H- 2) H. O R H Cp2Zr Cl Zr(IV), d0, 16e R OCHR2 Cl Cp2Zr Zr(IV), d0, 16e O Zr(IV), d0, 16e [Co(CO4)]- + H+ Co(-I), d10, 18e 2[Co(CN5)]3- Co(II), d6, 18e Co(II), d7, 17e + OCH2CH3 Cl Cp2Zr 3) H+ 2[HCo(CN5)]3- + 4) insertion to alkene and alkyne 5) H2 elimination HCo(CO4) Co(I), d8, 18e 5.3 molecular hydrogen complex H H Cy3P CO W OC PCy3 CO W(0), d6, 18e H H R3P PR3 Ru R3P H H H H OC CO Cr OC CO CO Ru(II), d6, 18e weak back donation to hydrogen Cr(0), d6, 18e 5.4 agostic interaction agostic interaction: interaction of a coordinately-unsaturated transition metal with a C-H bond (two electrons involved in the C-H bond enter the empty d-orbital of a transition metal, resulting in a two electron three center bond) ex) H P Cl H P Ti H Cl Cl P Cl P Ti Cl Cl H -agostic interaction 6. H H -agostic interaction donation, back-donation 6.1 carbonyl complex ex) M dM M C O n, HOMO donation dM C O n, O OCC CO CO OC Co Co CO OC CO CO Ni CO OC CO LUMO back-donation ...etc 6.2 nitrocyl complex Ln-1M M - NO N O LnM + N O CO equivalent 6.3 molecular nitrogen complex M NO N O LnM+ basic metal end-on O N Ph3P NO Ir Cl PPh3 Ph3P Ru NO Cl PPh3 6.4 molecular oxygen complex (H3N)5Co O O Co(NH3)5 N N Zr N Zr N N N ex) 5+ PPh2Et OC O Ir Cl O PPh2Et 6.5 molecular carbon dioxygen complex M O C O 1 -O high oxidation metal O O M C O -C,O 1 C O M 2 -C low oxidation metal 3 6.6 phosphine complex basicity: PR3> PR2Ar> PRAr2> PAr3 acceptor ability: NO> CO> RNC> PF3> PCl3> PCl2R> PBr2R> P(OR)3> PR3> RCN> RNH2> NH3 X M d - * interaction P X X d - * interaction a. Structural factor Tolman cone angle: measure of size of ligand bite angle: bidentate ligand P P M P M Table 9-7 Table 9-8 b. electronic factor (R3P)Ni(CO)3: there is a strong correlation between CO and electron donating ability of phosphine ligand. Table 9-9 6.7 carbene complex Fisher carbene: electrophilic carbene low oxidation state middle and late transition metal -acceptor ligand -donor substituents on methylene Schrock carbene: nucleophilic carbene high oxidation state early transition metal -donor ligand hydrogen and alkyl substituents on carbenoid carbon R LnM C R R R LnM C R LnM R R Me Ta H OMe OC CO W OC CO CO Tebbe complex H W(II), d4, 18e 0 Ta(V), d , 18e synthesis of carbene complex Ta(CH3)3(OAr)2 Me (C5H5)2Ta Me hv W(CO)6 Ta(=CH2)(CH3)(OAr)2 BF4- + CH2=P(CH3)3 (C5H5)2Ta PhLi (OC)5W OLi Me O+ 3 (OC)5W Ph OMe PhLi Ph (OC)5W Ph Ph Cl Cl OEt EtOH Cl Pt CNC6H5 Cl Pt PPh3 PPh3 NHC6H5 CH2 Me Me H Me 1-C10H7 (OC)5W N N H Me 1-C10H7 N N W(CO)6 + H H Me 1-C10H7 1-C10H7 7. -bonding ligand 7.1 alkene complex Cl Pt Cl Cl Dewar-Chatt-Duncanson model Cl Rh Rh Cl C C M dM , M donation C C high oxidation state C C M dM * , M back-donation C C anionic complex electron donating ligand 4 7.2 alkyne complex Dewar-Chatt-Duncanson model can be applied to alkyne complex. O Ph O R (OC)3Co Co(CO)3 + OC Mn OC R R R (OC)3Co Co(CO)3 Ph 7.3 -allyl complex HB HA HB 95~120° HA HA: anti HB: syn M dyz dz2 syn-anti isomerization HB HA allylic rotation HB HB HA HA M HB HA M M M HB HA HA HB HA HB HA HB L1 Mo L2 L1 Mo L2 cf) crotyl complex: racemization, 1,3-disubstituted allylic complex: syn-anti isomerization 7.4 diene complex molecular orbital (figure 9-20) M M diene metallacyclopentene back donation Zr, Ta, Nb R1 Zr R1 Zr racemic R2 R2 (CO)3Fe R1 (CO)3Fe R2 Zr Zr R1 R2 R1 R2 R1 R1 R2 (CO)3Fe R2 7.5 cyclopentadienyl complex 3 -indenyl M ex) ferrocene 18e cobaltcene 19e nickellocene 20e M M 5 -C5H5 1 -C5H5 Cl Ti Cl Ti(IV), d0, 16e electrophilic Cp*= C5(CH3)5 metallocene (figure 9-22) Cl Ta Cl Cl Ta(V), d0, 18e H Mo H Mo(IV), d2, 18e nucleophilic synthesis of cyclopentadienyl complex 1) metal salt + cyclopentadienyl anion FeCl2 + 2C5H5Na (C5H5)2Fe + 2NaCl 2) redutive condition RuCl3 + 3C5H6 + 1.5Zn (C5H5)2Ru + C5H8 + 1.5ZnCl2 5 7.5 OC benzene complex Cr CO CO Cr(0), d6, 18e Cr Fe Cr(0), d6, 18e F(II), d6, 18e figure 9-24 synthesis of arene complex 1) arene + metal salt CrCl3 + 2C6H6 + 1/3AlCl3 + 2/3Al Cr Na2S2O4 AlCl4- Cr(I), d5, 17e Cr Cr(0), d6, 18e 2) ligand exchange Mo(CO)6 + OC Mo CO CO Mo(0), d6, 18e 3) hydrogen extraction from cyclohexadiene RuCl3 + Cl Ru Cl Cl Ru Cl Ru(II), d6, 18e L L Mo Cl Cl Ru(II), d6, 18e 6