Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Industrial Catalysis Lecture for Makrokierunek Lecture 2 Homogeneous Catalysis by Transition Metals -Introduction Nikodem Kuźnik Silesian University of Technology Gliwice, Poland Lecture 2 Scope of the lecture • • • • • Definition of coordination compound, organometallics Structure of complexes Types of ligands Parameters of complexes (CN, OS, EN) Key reactions – – – – De/coordination of neutral ligand Ligand exchange Oxidative addition / reductive elimination De/insertion (β-elimination) Definition of complexes • Coordination (complex) compound Valency (Coordination Number CN) ≠ Oxidation State (OS) • Organometallics Bond: C – A A = any less electronegative element Complex Structure • • • Metal center(s) Ligand(s) Inter/outer coordination sphere Ligand classification • Neutral ligands H2O, NH3, H2, CO, PR3, alkenes, … • Ionic ligands H, F, Cl, Br, I, OH, alkyl, OR, … • Chelation phosphines, polyalkenes, polyamines, … „18 Electron rule” • • • • d-block elements tend to achieve 18 e Intert electron pair effect (Pd, Pt, …) f-block elements 32 e How to count electron number (EN)? Ionic ligans: 1 e Neutral ligands: 2 e Element’s electrons: valence electrons • Consequences Key reactions • • • • • • De/coordination of neutral ligand Ligand exchange Oxidative addition / reductive elimination De/insertion (β-elimination) Transmetallation Others – – – – Lewis acid de/coordination σ-bond metathesis H abstraction ortho-metallation De/coordination of neutral ligand Intermolecular process! [RhH(CO)(PPh3)3] → [RhH(CO)(PPh3)2] + PPh3 • ΔEN = -2, ΔCN = -1, ΔOS = 0 [Fe(CO)5] → [Fe(CO)4] + CO ΔEN = -2, ΔCN = -1, ΔOS = 0 [RhH(CO)(PPh3)2] + ethene → [RhH(CO)(ethene)(PPh3)2] ΔEN = +2, ΔCN = +1, ΔOS = 0 Ligand exchange [Co(NH3)6]3+ + 6H2O → [Co(H2O)6]3+ +6NH3 ΔEN = 0, ΔCN = 0, ΔOS = 0 [Co(NH3)6]3+ + 3 en → [Co(en)3]3+ +6NH3 [RuCl2(PPh3)3]+ethene→ [RhCl2(ethene) (PPh3)2] +PPh3 ΔG=-67 kJ/mol • • Chelation effect Possible mechanism: dissociative, associative, intermediates Oxidative addition–reductive elimination • [IrCl(H)2(CO)(PPh3)2]→[IrCl(CO)(PPh3)2]+H2 ΔEN = -2, ΔCN = -2, ΔOS = -2 • Mg + CH3CH2Br → Mg(Br)CH2CH3 ΔEN = +2, ΔCN = +2, ΔOS = +2 • syn orientation! Br + Pd PPh3 PPh3 Br Pd PPh3 PPh3 ΔEN = +2, ΔCN = +2, ΔOS = +2 De/insertion • • Intramolecular process syn orientation! CH3 H H H Rh Cl PPh3 H H PPh3 • Rh Cl H H H CH3 H PPh3 PPh3 ΔEN = -2, ΔCN = -1, ΔOS = -0 CO C Me Mn OC Mn CO CO Me O OC CO CO