Download Isosceles and Equilateral Triangles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Isosceles and
Equilateral
Triangles
Geometry (Holt 4-9)
K.Santos
Parts of an Isosceles Triangle
Isosceles triangle—is a triangle with at least two congruent sides
A
B
C
Legs—are the congruent sides
𝐴𝐵 and 𝐴𝐶
Vertex angle—angle formed by the legs
<A
Base—side opposite the vertex angle
𝐵𝐶
Base angles—two angles that have the base as a side
< B and < C
Isosceles Triangle
Theorem (4-9-1)
If two sides of a triangle are congruent, then the angles
opposite the sides are congruent.
A
B
C
Given: 𝐴𝐵 ≅ 𝐵𝐶
Then: <A ≅ <C
congruent sides
congruent angles
Converse of the Isosceles
Triangle Theorem (4-9-2)
If two angles of a triangle are congruent, then the sides
opposite those angles are congruent.
A
B
C
Given: <A ≅ <C
Then: 𝐴𝐵 ≅ 𝐵𝐶
congruent angles
congruent sides
Example—finding angle
measures
A
Find the measure of <C.
C
m< B = m< A = x
m < C + m < B + m < A = 180
x + 50 + 50 = 180
x + 100 = 180
x = 80 which means m< C = 80°
50°
B
Example—finding angle
measures
A
Find the measure of < C.
50°
x
C
m< C = m< B = x
m < C + m < B + m < A = 180
x + x + 50 = 180
2x + 50 = 180
2x = 130
x = 65 which means m < C = 65°
B
Example—finding angle
measures (algebraic)
S
Find x.
x + 38°
T
3x°
R
m<R=m<S
3x = x + 38
2x = 38
x = 19
Corollary(4-9-3)—
Equilateral Triangle
If a triangle is equilateral, then it is equiangular.
M
N
Given: 𝑀𝑁 ≅ 𝑁𝑂 ≅ 𝑀𝑂
Then: <M ≅ <N ≅ <O
equilateral
O
180/3 = 60°
equiangular
Corollary (4-9-4)—
Equiangular Triangle
If a triangle is equiangular, then it is equilateral.
M
N
Given: <M ≅ <N ≅ <O
O
Then: 𝑀𝑁 ≅ 𝑁𝑂 ≅ 𝑀𝑂
equiangular
equilateral
Example—Finding angles
Find x.
G
4x+12
H
I
triangle is equilateral-----equiangular each angle is 60°
4x + 12 = 60
4x = 48
x = 12°
Example—finding sides
J
Find t.
3t + 3
K
5t – 9
L
Triangle is equiangular---equilateral (all equal sides)
𝐾𝐿 ≅ 𝐽𝐿
5t – 9 = 3t + 3
2t – 9 = 3
2t = 12
t=6
Example—Multiple
Triangles
Find the measures of the numbered angles.
m< 3 = m< 4
x + x + 80 = 180
2x + 80 = 180
2x = 100
x = 50 so m <3 and m < 4 = 50
m< 1 and m< 4 are supplementary
m< 1 + m < 4 = 180
m< 1 + 50 = 180
m< 1 = 130
m< 1 + m< 2 + m< 5 = 180 with m< 2 = m< 5
130 + y + y = 180
130 + 2y = 180
2y = 50
y = 25 so m< 2 = 25, and m< 5 = 25
80 5
3
4
1
2
Related documents