Download Algebra – Olympiad problems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ALGEBRA
TIPS FOR MATHEMATICS OLYMPIAD
1.
Every polynomial equation of degree nโ‰ฅ1 has exactly n roots.
2.
If a c Complex polynomial equation with real coefficients has a complex root p+iq (p,q real
numbers,qโ‰ 0) then it also has a complex root p-iq.
3.
Pigeonhole Principle:
If more than n objects are distributed in n boxes, then atleast one box has more than
one object in it.
4.
If a+b+c=0 then
i)
a2+b2+c2=-2(ab+bc+ca)
ii)
a3+b3+c3=3abc
iii)
a4+b4+c4=2(b2c2+c2a2+a2b2) =1/2.(a2+b2+c2)2.
5.
For any three real numbers a,b,c
๐‘Ž2 + ๐‘ 2 + ๐‘ 2 โ‰ฅ ๐‘Ž๐‘ + ๐‘๐‘ + ๐‘๐‘Ž
๐‘Ž4 + ๐‘ 4 + ๐‘ 4 โ‰ฅ ๐‘Ž2 ๐‘ 2 + ๐‘ 2 ๐‘ 2 + ๐‘ 2 ๐‘Ž2
๐‘Ž2 ๐‘ 2 + ๐‘ 2 ๐‘ 2 + ๐‘ 2 ๐‘Ž2 โ‰ฅ ๐‘Ž๐‘๐‘(๐‘Ž + ๐‘ + ๐‘)
๐‘Ž4 + ๐‘ 4 + ๐‘ 4 โ‰ฅ ๐‘Ž๐‘๐‘(๐‘Ž + ๐‘ + ๐‘)
1.
2.
3.
4.
5.
6.
๐‘Ž2 +๐‘ 2
๐‘Ž+๐‘
๐‘Ž4 +๐‘ 4
๐‘Ž2 +๐‘ 2
1
โ‰ฅ 2 (๐‘Ž + ๐‘)
1
โ‰ฅ 2 (๐‘Ž2 + ๐‘ 2 )
๐‘Ž+๐‘+๐‘ 2
1
7.
(
8.
โˆš๐‘Ž2 + ๐‘ 2 + โˆš๐‘ฅ 2 + ๐‘ฆ 2 โ‰ฅ โˆš(๐‘ฅ + ๐‘Ž)2 + (๐‘ฆ + ๐‘)2
3
) > 3 (๐‘Ž๐‘ + ๐‘๐‘ + ๐‘๐‘Ž)
๐‘จ๐‘ด โ‰ฅ ๐‘ฎ๐‘ด โ‰ฅ ๐‘ฏ๐‘ด
6.
๐‘Ž1 + ๐‘Ž2 + โ‹ฏ + ๐‘Ž๐‘›
๐‘›
โ‰ฅ (๐‘Ž1 . ๐‘Ž2 . โ€ฆ ๐‘Ž๐‘› )1/๐‘› โ‰ฅ (
)
1
1
1
๐‘›
+
+
โ‹ฏ
โ€ฆ
+
๐‘Ž1 ๐‘Ž2
๐‘Ž๐‘›
If ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› are n positive distinct real numbers then
7.
1.
2.
๐‘š
๐‘Ž1๐‘š +๐‘Ž2๐‘š +โ‹ฏ+๐‘Ž๐‘›
๐‘›
๐‘š
๐‘Ž1๐‘š +๐‘Ž2๐‘š +โ‹ฏ+๐‘Ž๐‘›
๐‘›
>(
<(
๐‘Ž1 +๐‘Ž2 +โ‹ฏ+๐‘Ž๐‘› ๐‘š
๐‘›
)
๐‘Ž1 +๐‘Ž2 +โ‹ฏ+๐‘Ž๐‘› ๐‘š
๐‘›
)
๐‘–๐‘“ ๐‘š < 0 ๐‘œ๐‘Ÿ ๐‘š > 1
๐‘–๐‘“ 0 < ๐‘š < 1
3.
๐‘š
๐‘1 ๐‘Ž1๐‘š +๐‘2 ๐‘Ž2๐‘š +โ‹ฏ+๐‘๐‘› ๐‘Ž๐‘›
๐‘1 +๐‘2 +โ‹ฏ+๐‘๐‘›
๐‘1 ๐‘Ž1 +๐‘2 ๐‘Ž2 +โ‹ฏ+๐‘๐‘› ๐‘Ž๐‘› ๐‘š
>(
)
๐‘1 +๐‘2 +โ‹ฏ+๐‘๐‘›
๐‘–๐‘“ ๐‘š < 0 ๐‘œ๐‘Ÿ ๐‘š > 1 where
๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› and ๐‘1 , ๐‘2 , โ€ฆ , ๐‘๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘š ๐‘Ž๐‘Ÿ๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘ .
4.
8.
๐‘š
๐‘1 ๐‘Ž1๐‘š +๐‘2 ๐‘Ž2๐‘š +โ‹ฏ+๐‘๐‘› ๐‘Ž๐‘›
๐‘1 +๐‘2 +โ‹ฏ+๐‘๐‘›
)
๐‘1 +๐‘2 +โ‹ฏ+๐‘๐‘›
๐‘–๐‘“ 0 < ๐‘š < 1
If ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› are n positive distinct real numbers then
๐‘+๐‘ž+๐‘Ÿ
๐‘Ž1
๐‘+๐‘ž+๐‘Ÿ
+๐‘Ž2
๐‘›
9.
๐‘1 ๐‘Ž1 +๐‘2 ๐‘Ž2 +โ‹ฏ+๐‘๐‘› ๐‘Ž๐‘› ๐‘š
<(
๐‘+๐‘ž+๐‘Ÿ
+โ‹ฏ+๐‘Ž๐‘›
๐‘
>
๐‘
๐‘
๐‘ž
๐‘ž
๐‘ž
๐‘Ÿ
๐‘Ž1 +๐‘Ž2 +โ‹ฏ+๐‘Ž๐‘› ๐‘Ž1 +๐‘Ž2 +โ‹ฏ+๐‘Ž๐‘› ๐‘Ž1๐‘Ÿ +๐‘Ž2๐‘Ÿ +โ‹ฏ+๐‘Ž๐‘›
๐‘›
.
๐‘›
.
๐‘›
Weierstrass Inequality :
1. If ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› are n positive real numbers, then for n โ‰ฅ 2
(1 + ๐‘Ž1 ) (1 + ๐‘Ž2 ) (1 + ๐‘Ž3 ) โ€ฆ..(1 + ๐‘Ž๐‘› ) > 1 + ๐‘Ž1 + ๐‘Ž2 + โ‹ฏ + ๐‘Ž๐‘›
2. If ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› are n positive real numbers, then for n < 1
(1 โˆ’ ๐‘Ž1 ) (1 โˆ’ ๐‘Ž2 ) (1 โˆ’ ๐‘Ž3 ) โ€ฆ..(1 โˆ’ ๐‘Ž๐‘› ) > 1 โˆ’ ๐‘Ž1 โˆ’ ๐‘Ž2 โ€ฆ โˆ’ ๐‘Ž๐‘›
10.
Tchebychefโ€™s Inequality:
If ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› and ๐‘1 , ๐‘2 , โ€ฆ , ๐‘๐‘› ๐‘Ÿ๐‘’๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ๐‘  ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž1 โ‰ค ๐‘Ž2 โ‰ค โ€ฆ . โ‰ค ๐‘Ž๐‘›
and ๐‘1 โ‰ค ๐‘2 โ‰ค โ‹ฏ โ‰ค ๐‘๐‘› ๐‘กโ„Ž๐‘’๐‘›
n(๐‘1 ๐‘Ž1 + ๐‘2 ๐‘Ž2 + โ‹ฏ + ๐‘๐‘› ๐‘Ž๐‘› ) โ‰ฅ (๐‘Ž1 + ๐‘Ž2 + โ‹ฏ + ๐‘Ž๐‘› )(๐‘1 + ๐‘2 + โ‹ฏ + ๐‘๐‘› )
(or)
๐‘1 ๐‘Ž1 + ๐‘2 ๐‘Ž2 + โ‹ฏ + ๐‘๐‘› ๐‘Ž๐‘›
๐‘Ž1 + ๐‘Ž2 + โ‹ฏ + ๐‘Ž๐‘› ๐‘1 + ๐‘2 + โ‹ฏ + ๐‘๐‘›
โ‰ฅ
.
๐‘›
๐‘›
๐‘›
11.
12.
CAUCHY-SCHWARZ Inequality:
If a,b,c and x,y,z are any real numbers ( positive, negative or zero) then
(๐‘Ž๐‘ฅ + ๐‘๐‘ฆ + ๐‘๐‘ง)2 โ‰ค (๐‘Ž2 + ๐‘ 2 + ๐‘ 2 )(๐‘ฅ 2 + ๐‘ฆ 2 + ๐‘ง 2 )
with equality iff a:b:c::x:y:z
DESCARTEโ€™S RULE OF SIGNS:
Suppose P(x) is a polynomial whose terms are arranged in descending powers of x
of the variable. Thus , the number of positive real zeros of P(x) is the same as the
number of changes in sign of the coefficients of the terms or less than this by an even
number.
The number of negative real zeros of P(x) is the same as the number of changes in sign
of the coefficients of the terms of P(-x) or is less than this number by an even number.
13.
14.
If the rational number
๐‘
๐‘ž
(where p,q are integers qโ‰  0, (๐‘, ๐‘ž) = 1, ๐‘–. ๐‘’; ๐‘๐‘œ๐‘๐‘Ÿ๐‘–๐‘š๐‘’๐‘  )
is a root of the equation ๐‘Ž0 ๐‘ฅ ๐‘› + ๐‘Ž1 ๐‘ฅ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž๐‘› = 0, where ๐‘Ž1 , ๐‘Ž2 , โ€ฆ . , ๐‘Ž๐‘› are
integers and
๐‘Ž๐‘› โ‰  ๐‘œ, then , p is a divisor of ๐‘Ž๐‘› and q is a divisor of ๐‘Ž0
FUNCTIONAL EQUATIONS:
An equation involving an unknow3n function is called a functional equation.
1.
2.
3.
โˆ’๐‘
๐‘
If ๐›ผ, ๐›ฝ ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Ž๐‘ฅ 2 + ๐‘๐‘ฅ + ๐‘ = 0 , ๐‘กโ„Ž๐‘’๐‘› ๐›ผ + ๐›ฝ = ๐‘Ž , ๐›ผ๐›ฝ = ๐‘Ž
If ๐›ผ, ๐›ฝ, ๐›พ ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Ž๐‘ฅ 3 + ๐‘๐‘ฅ 2 + ๐‘๐‘ฅ + ๐‘‘ = 0 , ๐‘กโ„Ž๐‘’๐‘›
โˆ’๐‘
๐‘
โˆ’๐‘‘
๐›ผ+๐›ฝ+๐›พ =
,
โˆ‘ ๐›ผ๐›ฝ =
๐›ผ๐›ฝ๐›พ =
๐‘Ž
๐‘Ž
๐‘Ž
If ๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Ž๐‘ฅ 4 + ๐‘๐‘ฅ 3 + ๐‘๐‘ฅ 2 + ๐‘‘๐‘ฅ + ๐‘’ = 0 , ๐‘กโ„Ž๐‘’๐‘›
โˆ’๐‘
๐‘
โˆ’๐‘‘
โˆ’๐‘‘
๐›ผ+๐›ฝ+๐›พ+๐›ฟ =
,
โˆ‘ ๐›ผ๐›ฝ = ; โˆ‘ ๐›ผ๐›ฝ๐›พ =
๐›ผ๐›ฝ๐›พ =
๐‘Ž
๐‘Ž
๐‘Ž
๐‘Ž
MATHS OLYMPIAD QUESTIONS AND SOLUTIONS:
ALGEBRA
Q.NO
1.
QUESTIONS/SOLUTIONS
Find the maximum number of positive and negative real roots of the equation
๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ 1 = 0.
Solution:
Let f(x)= ๐‘ฅ 4 + ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ 1
The signs are +,+,+,-,-,
There is only one change of sign from positive to negative.
โˆด there is only one positive root.
F(-x)=(- ๐‘ฅ)4 + (โˆ’๐‘ฅ)3 + (โˆ’๐‘ฅ)2 โˆ’ (โˆ’๐‘ฅ) โˆ’ 1
= ๐‘ฅ4 โˆ’ ๐‘ฅ3 + ๐‘ฅ2 + ๐‘ฅ โˆ’ 1
The signs are +, -, +, +, There are three changes in sign
โˆด three negative roots.
2.
If ๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ, be the roots of the equation ๐‘ฅ 4 + ๐‘๐‘ฅ 3 + ๐‘ž๐‘ฅ 2 + ๐‘Ÿ๐‘ฅ โˆ’ ๐‘  = 0. Show that
(1+๐›ผ 2 )(1 + ๐›ฝ 2 )(1 + ๐›พ 2 )(1 + ๐›ฟ 2 ) =(1-q+s)2 +(p-r)2.
Solution:
Since ๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ ๐‘Ž๐‘Ÿ๐‘’ the roots of the equation ๐‘ฅ 4 + ๐‘๐‘ฅ 3 + ๐‘ž๐‘ฅ 2 + ๐‘Ÿ๐‘ฅ โˆ’ ๐‘  = 0,
๐‘ฅ 4 + ๐‘๐‘ฅ 3 + ๐‘ž๐‘ฅ 2 + ๐‘Ÿ๐‘ฅ โˆ’ ๐‘  = (๐‘ฅ โˆ’ ๐›ผ)(๐‘ฅ โˆ’ ๐›ฝ)(๐‘ฅ โˆ’ ๐›พ)(๐‘ฅ โˆ’ ๐›ฟ)
If x=i ,
๐‘– 4 + ๐‘๐‘– 3 + ๐‘ž๐‘– 2 + ๐‘Ÿ๐‘– โˆ’ ๐‘  = (๐‘– โˆ’ ๐›ผ)(๐‘– โˆ’ ๐›ฝ)(๐‘– โˆ’ ๐›พ)(๐‘– โˆ’ ๐›ฟ)
1-pi-q+ri+s=(๐‘– โˆ’ ๐›ผ)(๐‘– โˆ’ ๐›ฝ)(๐‘– โˆ’ ๐›พ)(๐‘– โˆ’ ๐›ฟ)
( 1-q+s)-i(p-r)= (๐‘– โˆ’ ๐›ผ)(๐‘– โˆ’ ๐›ฝ)(๐‘– โˆ’ ๐›พ)(๐‘– โˆ’
๐›ฟ)โ€ฆโ€ฆโ€ฆ..(i)
If x=-I,
(โˆ’๐‘–)4 + ๐‘(โˆ’๐‘–)3 + ๐‘ž(โˆ’๐‘–)2 + ๐‘Ÿ(โˆ’๐‘–) โˆ’ ๐‘  = (๐‘– + ๐›ผ)(๐‘– + ๐›ฝ)(๐‘– + ๐›พ)(๐‘– + ๐›ฟ)
1+pi-q-ri+s=(๐‘– + ๐›ผ)(๐‘– + ๐›ฝ)(๐‘– + ๐›พ)(๐‘– + ๐›ฟ)
( 1-q+s)+i(p-r) = (๐‘– + ๐›ผ)(๐‘– + ๐›ฝ)(๐‘– + ๐›พ)(๐‘– +
๐›ฟ)โ€ฆโ€ฆโ€ฆ..(ii)
(i)x(ii)=>
(1-q+s)2+(p-r)2=(๐‘– 2 โˆ’ ๐›ผ 2 ) (๐‘– 2 โˆ’ ๐›ฝ 2 ) (๐‘– 2 โˆ’ ๐›พ 2 )(๐‘– 2 โˆ’ ๐›ฟ 2 )
=(1 + ๐›ผ 2 ) (1 + ๐›ฝ 2 ) (1 + ๐›พ 2 )(1 + ๐›ฟ 2 ).
3.
Show that (๐‘ฅ โˆ’ 1)2 is a factor of ๐‘ฅ ๐‘› โˆ’ ๐‘›๐‘ฅ + ๐‘› โˆ’ 1.
Solution:
Let f(x)= ๐‘ฅ ๐‘› โˆ’ ๐‘›๐‘ฅ + ๐‘› โˆ’ 1.
f (1)=1-n+n-1=0
โˆด ( x-1) is a factor.
f(x)= ๐‘ฅ ๐‘› โˆ’ ๐‘›๐‘ฅ + ๐‘› โˆ’ 1.
= ๐‘ฅ ๐‘› โˆ’ 1 โˆ’ ๐‘›๐‘ฅ + ๐‘›.
=๐‘ฅ ๐‘› โˆ’ 1 โˆ’ ๐‘›(๐‘ฅ โˆ’ 1).
=(x-1){๐‘ฅ ๐‘›โˆ’1 + ๐‘ฅ ๐‘›โˆ’2 + โ‹ฏ + 1 โˆ’ ๐‘›}
=(x-1)g(x)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)
๐‘›โˆ’1
Now g(x)= ๐‘ฅ
+ ๐‘ฅ ๐‘›โˆ’2 + โ‹ฏ + 1 โˆ’ ๐‘›
g (1)=1+1+1+โ€ฆ.1-n
=0.
โˆด ( x-1) is a factor of g(x)
โˆด ( x-1)2 is a factor of f(x)
{by (i)}
4.
If sin ๐œƒ + cos ๐œƒ = 1, (sin ๐œƒ > 0, cos ๐œƒ > 0).
Show that (1+cosec๐œƒ)(1 + ๐‘ ๐‘’๐‘๐œƒ) โ‰ฅ 9.
Solution:
We know that AM โ‰ฅ GM.
sin ๐œƒ+cos ๐œƒ
2
โ‰ฅ โˆšsin ๐œƒ cos ๐œƒ.
1
โ‰ฅ โˆšsin ๐œƒ cos ๐œƒ.
1
โ‰ฅ sin ๐œƒ cos ๐œƒ
4
Let If sin ๐œƒ = ๐‘ฅ, cos ๐œƒ =y
2
1
1
(1+cosec๐œƒ)(1 + ๐‘ ๐‘’๐‘๐œƒ)=(1+ ๐‘ฅ ) (1 + ๐‘ฆ)
(๐‘ฅ+1)(๐‘ฆ+1)
=
๐‘ฅ๐‘ฆ
(๐‘ฅ๐‘ฆ+๐‘ฅ+๐‘ฆ+1)
=
๐‘ฅ๐‘ฆ
๐‘ฅ๐‘ฆ+2
=
๐‘ฅ๐‘ฆ
.
โ‰ฅ ๐‘(๐‘ ๐‘Ž๐‘ฆ)
๐‘ฅ๐‘ฆ + 2 โ‰ฅ ๐‘๐‘ฅ๐‘ฆ
2โ‰ฅ (๐‘ โˆ’ 1)๐‘ฅ๐‘ฆ
2
๐‘โˆ’1
โ‰ฅ ๐‘ฅ๐‘ฆ
1
but
โˆด
4
2
โ‰ฅ ๐‘ฅ๐‘ฆ
๐‘โˆ’1
=
1
P=9.
5.
4x
9x๏€ซy
If x ๏€ซ y ๏€ฝ 8 and 5 y ๏€ฝ 243 find the value of x-y.
3
2
4x
๏€ฝ8
2x๏€ซy
SOLUTION:
๏ƒž
(2 2 ) x
๏€ฝ8
2x๏€ซy
22x
๏ƒž x๏€ซy ๏€ฝ 8
2
๏ƒž
2 2 x ๏€ญx ๏€ญ y ๏€ฝ 8
.
4
6.
A po
๏ƒž
2 x ๏€ญy ๏€ฝ (2)3
๏ƒž
x๏€ญy๏€ฝ3
The Polynomial p (x) leaves a remainder 3 when divided by x โ€“ 1 and a remainder
5 when divided by x-3. Find the remainder when p(x) is divided by (x-1) (x-3).
SOLUTION๏‘ The polynomial gives a remainder 3 on division by
x โ€“1.
Let, p (x) = k(x-1) + 3
= kx โ€“ k + 3
Now,
k
x ๏€ญ 3 kx ๏€ญ k ๏€ซ 3
kx ๏€ญ 3k
2k ๏€ซ 3
Remainder = 2k + 3
But,
2k + 3 = 5
๏ƒž 2k = 2
๏ƒžk=1
= k (x-1) + 3
= 1 (x-1) + 3
=x-1 + 3
= x +2
Now ,
(x-1) (x-3)
= x2 โ€“ 4x + 3
Dividing p(x) by x2 โ€“ 4x + 3
0
x ๏€ญ 4x ๏€ซ 3 x ๏€ซ 2
0๏€ซ0
x๏€ซ2
2
Hence, the required remainder = x + 2.
7.
Show that there do not exist any distinct natural numbers a, b, c, d such that
a3 + b3 = c3 + d3 and a + b = c + d
SOLUTION:
a3 + b3 = c3 + d3 and a + b = c + d
a3 + b3 = c3 + d3
๏ƒž
(a+b) (a2-ab+b2) = (c+d) (c2 - cd + d2)
๏ƒž
a2 โ€“ ab + b2 = c2 โ€“ cd + d2
๏ƒž
(a+b)2 โ€“ 3ab = (c + d)2 โ€“ 3cd
๏ƒž
-3ab = -3cd
๏ƒž
ab = cd
๏ƒž
ab =
cd
Given a + b = c + d
a๏€ซb
c๏€ซd
๏€ฝ
2
2
๏œ
ab =
And
cd
Here, A.M. of a, b is equal to AM of c, d
And G.M. of a, b is equal to G.M. of c, d
This is only possible when a,b and c,d are equal
But, they must be distinct
๏œ It is not possible
8.
๐‘Ž
๐‘
๐‘
๐‘‘
If a,b,c,d be any four positive real numbers ,then prove that ๐‘ + ๐‘ +๐‘‘ + ๐‘’ โ‰ฅ 4
SOLUTION: Applying the inequality of the means A.M โ‰ฅ G.M to the four possible
numbers
๐‘Ž
๐‘
๐‘Ž
๐‘
๐‘
๐‘ ๐‘
๐‘‘
๐‘Ž
๐‘
๐‘
๐‘‘
๐‘Ž
๐‘
๐‘
๐‘‘
, ๐‘ ,๐‘‘ , ๐‘’ we have ¼( ๐‘ + ๐‘ +๐‘‘ + ๐‘’ ) โ‰ฅ( ๐‘ + ๐‘ +๐‘‘ + ๐‘’ )1/4
๐‘‘
โ†’๐‘ + ๐‘ +๐‘‘ + ๐‘’ โ‰ฅ4Type equation here.
9.
If a,b,c,d are four positive real numbers such that abcd=1 Prove that
(1+a)(1+b)(1+c)(1+d)โ‰ฅ16
SOLUTION: Since A.Mโ‰ฅG.M
1+๐‘Ž
2
1+๐‘
2
1+๐‘
2
โ‰ฅ(1.a)1/2
โ‰ฅ(1.b)1/2
โ‰ฅ(1.c)1/2
1+๐‘‘
2
โ‰ฅ(1.d)1/2
Multiplying the inequalities
(1+a)(1+b)(1+c)(1+d
16
โ‰ฅ (abcd)1/2
(1+a)(1+b)(1+c)(1+d)โ‰ฅ16
10.
n+1 2n
Prove that nn (
n
) หƒ(n!)3
Solution:
Consider positive numbers 13,23,โ€ฆ,n3
Since AMหƒGM,
(13+23+โ€ฆ+n3 )/nหƒ(13.23โ€ฆn3)1/n
n(n + 1) 2
(
)
2
n
By simplifying,
n+1 2n
nn (
n
) หƒ(n!)3
1
หƒ( (n!)3 )n
11. If x , y, z are three real numbers such that x + y + z =4 and x2 + y2 +z2 = 6 ,
๏ƒฉ2
๏ƒน
then show thtat each of x , y ,z lies in the ๏ƒช , 2๏ƒบ . Can x attains
๏ƒซ3
๏ƒป
2
extreme value ?
3
Solution:
We have y + z = 4 - x and y2 +z2 = 6 - x2
From Cauchyโ€™s Schwarz inequality we get y2 +z2 ๏‚ณ
1
( y + z )2
2
1
( 4-x)2 .This simplifies to (3x - 2) (x โ€“ 2) ๏‚ฃ 0.
2
2
Hence we have
๏‚ฃ x ๏‚ฃ 2. Suppose x =2 then y +z =2 , y2 +z2 = 2 which
3
has solution
y = z = 1. Since the given relations are symmetric in x , y , z similar
assertions hold for y and z.
Hence 6 - x2 ๏‚ณ
12.
If squares of the roots of x4+bx2+cx+d=0 are ฮฑ,ฮฒ,ฮณ,ฮด, then prove that:
64ฮฑฮฒฮณฮดโˆ’[4โˆ‘ฮฑฮฒโˆ’(โˆ‘ฮฑ)2]2=0.
Solution:
x4+bx2+cx+d=0......(1)
Let y be the root of transformed equation.
y=x^2
x4+bx2+d=โˆ’cx
since bring all even powers one side and odd powers other
side.
Squaring on both sides, we get
(x4+bx2+d)2=c2x2
(y2+by+d)2=c2y since y=x2
y4+b2y2+d2+2by3+2bdy+2dy2=c2y
y4+2by3+(b2+2d)y2+(2bdโˆ’c2)y+d2=0...(2)
It is the equation whose roots are squares of roots of x4+bx2+cx+d=0
now for (2)ฮฑ,ฮฒ,ฮณ,ฮด are the roots.
โˆ‘ฮฑ =-2b
โˆ‘ฮฑฮฒ=b2+2d
โˆ‘ฮฑฮฒฮณ =-(2bd-c^2)
ฮฑฮฒฮณฮด = d2
Now plug the values in required function.
64ฮฑฮฒฮณฮดโˆ’[4โˆ‘ฮฑฮฒโˆ’(โˆ‘ฮฑ)2]2 = 64d2โˆ’(4(b2+2d)โˆ’(โˆ’2b)2)2
=64d2โˆ’(4b2+8dโˆ’4b2)2
=64d2โˆ’(8d)2
=64d2โˆ’64d2
=0
Hence it is proved.
13. Prove that 3a4โˆ’4a3b+b4โ‰ฅ0 for all real numbers a and b.
Solution:
3a4โˆ’4a3b+b4
=a4+2a4+b4โˆ’4a3b
=a4+b4+2a4โˆ’4a3b
=(a2)2+(b2)2+2a4โˆ’4a3b
= (a2)2+(b2)2โˆ’2a2b2+2a2b2+2a4โˆ’4a3b
= (a2โˆ’b2)2+2a2b2+2a4โˆ’4a3b
= (a2โˆ’b2)2+2a2(b2+a2โˆ’2ab)
= (a2โˆ’b2)2+2a2(aโˆ’b)2โ‰ฅ0 for all a, b
As square is always positive and sum of the squares also positive.
Hence proved.
14. If a polynomial is divided by x-1 and x-2, we obtain remainder 2 and 1
respectively. Find the remainder if it is divided by (x-1) (x-2).
Solution:
As, on dividing by (x-1) the polynomial leaves a remainder of 2.
So, the polynomial must be, p(x) = k (x-1) + 2 for a real K.
๏ƒž p(x) = kx โ€“ k + 2
Now, dividing p(x) by (x-2)
K
x ๏€ญ 2 kx ๏€ญ k ๏€ซ 2
kx ๏€ญ 2k
k๏€ฝ2
i.e. remainder = k + 2 But, remainder must be 1
๏œ k+2 = 1 ๏ƒž k = -1
๏œ p(x) = (-1) (x-1) + 2
=-x+3
Now (x-1) (x-2)
= x2 - 3x + 2
Dividing p(x) by x2 โ€“ 3x + 2,
x 2 ๏€ญ 3x ๏€ซ 2 ๏€ญ x ๏€ซ 3 i.e. the remainder is (-x+3) only = -x+3
a ๏€ญx ๏€ซ b๏€ญx ๏€ซ c๏€ญx ๏€ฝ0
15. If
Prove that (a + b + c + 3x) (a + b + c - x) = 4(bc + ca + ab)
Solution:
a ๏€ญx ๏€ซ b๏€ญx ๏€ซ c๏€ญx ๏€ฝ0
๏ƒž
a๏€ญx ๏€ซ b๏€ญx ๏€ฝ ๏€ญ c๏€ญx
๏ƒž
(a ๏€ซ b ) ๏€ซ ( b ๏€ญ x ) ๏€ซ 2 a ๏€ญ x ๏€ญ b ๏€ญ x ๏€ฝ c ๏€ญ x
๏ƒž
a+bโ€“cโ€“x=-2
๏ƒž
a2 + b2 + c2 + 2ab โ€“ 2bc โ€“ 2ca โ€“ 2x (a+b-c) + x2 = 4 {ab โ€“ x(a+b)
a๏€ญx b๏€ญx
+ x2}
๏ƒž
(a + b + c)2 + 2x (a + b + c ) โ€“ 3x2 = 4 (ab + bc + ca)
๏ƒž
16.
(a + b + c + 3x) (a + b + c - x) = 4 (bc + ca + ab)
Let a+b+c =1 and ab ๏€ซ bc ๏€ซ ca ๏€ฝ
1
3
a, b, c are real numbers.
Find the value of
(i)
a
b
c
๏€ซ ๏€ซ
b
c
a
(ii)
a
b
c
๏€ซ
๏€ซ
b๏€ซa
c๏€ซa
a ๏€ซ1
Solution :
๏€จa ๏€ญ b๏€ฉ2
๏€ซ ๏€จb ๏€ญ c ๏€ฉ2 ๏€ซ ๏€จc ๏€ญ a ๏€ฉ2
=
2 ๏ƒฆ๏ƒง a 2 ๏€ซ b 2 ๏€ซ c 2 ๏€ญ ab ๏€ญ bc ๏€ญ ca ๏ƒถ๏ƒท
=
2 ๏ƒฉ๏ƒช๏€จa ๏€ซ b ๏€ซ c๏€ฉ2 ๏€ญ 3 ๏€จab ๏€ซ bc ๏€ซ ca ๏€ฉ๏ƒน๏ƒบ
๏ƒซ
๏ƒป
=
1๏ƒน
๏ƒฉ
2 ๏ƒช1 ๏€ญ 3 ๏ƒ— ๏ƒบ
3๏ƒป
๏ƒซ
=
0
๏ƒจ
So, a = b,
๏ƒธ
b = c, and c = a
So, a+b+c=1, gives a ๏€ฝ b ๏€ฝ c ๏€ฝ
So,
a
b
c
๏€ซ ๏€ซ
b
c
a
=
1+1+1
1
3
=
3
and
a
b
c
๏€ซ
๏€ซ
b ๏€ซ1 c ๏€ซ a
a ๏€ซ1
=
1/ 3
1/ 3
1/ 3
๏€ซ
๏€ซ
4/3
4/3
4/3
=
3
4
17. Factorize
(y-z)5 + (z-x)5 + (x-y)5
Solution:
Putting a, b, c for y-z, z-x and x-y respectively.
The expression reduces to
a5 + b5 + c5
Now a + b + c = y-z + z โ€“ x + x โ€“ y = 0
๏ƒža+b=-c
๏ƒž a2 + b2 + 2ab = c2
๏ƒž - c5 = (a + b)5
= a5 + b5 + 5a4b + 10a3b2 + 10a2b2 + 5ab4
๏ƒž - (a5 + b5 + c5)
= 5ab (a3 + b3) + 10a2b2 (a+b)
= 5ab (a + b) {(a2 โ€“ ab + b2) + 2ab}
= 5ab (-c) {a2 + b2 + ab)
= - 5abc (a2 + b2 + ab)
putting back the values of a, b and the expression
= 5 (y-z) (z-x) (x-y) {(y-z)2 + (z-x)2 + (y-z) (z-x)}
= 5 (y-z) (z-x) (x-y) (y2+z2 -2yz + z2โ€“2zx+yz+2x-x2 โ€“ xy)
(y-z)5 + (z-x)5 + (x-y)5 = 5 (y-z) (z-x) (x-y) (x2+ y2+z2 -yz -zx โ€“ xy)
(a)18. If f(x) = ax7 + bx5 + cx3 โ€“ 6, and f(-9) = 3, find f(9).
(b)
Find the value of
(2002) 3 ๏€ญ (1002) 3 ๏€ญ (1000) 3
3 x (1002) x (1000)
Solution:
(a)
๏œ
F (x) = ax7 + bx5 + cx3 - 6
f (-9)
=
3
f (-9)
=
a (-9)7 + b (-9)5 + c (-9)3 โ€“ 6
๏ƒža (-9)7 + b (-9)5 + c (-9)3 โ€“ 6 = 3
๏ƒž -a (9)7 + b (-9)5 + -c (9)3 = 9
๏ƒž -a (9)7 - b (9)5 - c (9)3 = 9
๏ƒž a (9)7 + b (9)5 + c (9)3 = - 9
๏œ
f (9)
=
a (9)7 + b (9)5 + c (9)3 โ€“ 6
=
-9-6
=
-15 Ans.
(b)
(2002)3 ๏€ญ (1002)3 ๏€ญ (1000)3
3 x (1002) x (1000)
=
(2002 ๏€ญ1002) [( 2002) 2 ๏€ซ (2002) (1002) ๏€ซ (1002)2 ] ๏€ญ (1000)3
3 x (1002) x (1000)
1000 [( 2002 ๏€ญ1002 ) 2 ๏€ซ 3 (2002 ) (1002 )] ๏€ญ (1000 )3
=
3 x (1002 ) x (1000 )
(1000 ) 2 ๏€ซ 3 (2002 ) (1002 ) ๏€ญ (1000 ) 2
=
3 x (1002 )
3 (2002 ) (1002 )
=
3 x (1002 )
= 2002 Ans.
19. (a)
Solve : x2 + xy + y2 = 19
x2 - xy + y2 = 49
(b)
The quadratic polynomials p(x) = a (x-3)2 + bx + 1 and q (x) = 2x2 + c
(x-2) + 13 are equal for all values of x. Find the values of a, b and c.
Solution:
(a)
x2 + xy + y2 = 19
๏ƒž xy = 19 โ€“ x2 โ€“ y2
\ x2 โ€“ xy + y2 = 49
๏ƒž x2 โ€“ (19-x2-y2) + y2 = 49
๏ƒž 2x2 + 2y2 = 49 + 19
๏ƒž x2 + y2 =
68
2
๏ƒž x2 + y2 = 34
\ x2 + xy + y2 = 19
๏ƒž 34 + xy = 19
๏ƒž xy = 19 โ€“ 34
= -15
\ (x+ y)2
= x2 + y2 + 2xy
= 34 + 2x (-15)
= 34 โ€“ 30
=4
๏ƒžx+y=4
(x-y)2 = x2 + y2 โ€“ 2xy
= 34 โ€“ 2 (-15)
= 34 + 30
= 64
๏ƒžx-y=8
x+y=4
x-y=8
2x = 12
๏ƒžx=6
6+y = 4
๏ƒž y = -2
x=6
y = -2
3(b)
p (x) = a(x-3)2 + bx + 1
q (x) = 2x2 + c(x-2) + 13
p(3) = a (3-3)2 + 3b + 1
= 3b + 1
q(3)
= 2 x 32 +c(3-2) + 13
= 18 + c + 13
= 31 + c
3b + 1 = 31 + c
๏ƒž 3b โ€“ c = 30
p(2)
= a (2-3)2 + 2b + 1
= a+2b + 1
q(2)
= 2 x 22 + c (2-2) + 13
= 4 + 13
=17
a + 2b + 1 = 17
(i)
๏ƒž a + 2b = 16
p(o)
= a (0-3)2 + 6(0) + 1
= 9a +1
q(o)
= 2x02 + 6(0-2) + 13
= -2c + 13
9a + 1 = -2c + 13
๏ƒž 9a + 2c = 12
(iii)
We have the following three eqn :
3b โ€“ c = 30
a + 2b = 16
9a + 2c = 12
6b โ€“ 2c = 60
+
9a + 2c = 12
9a + 6b = 72
๏ƒž 3a + 2b = 24
3a + 2b = 24
a + 2b = 16
2a = 8
๏ƒža=4
4 + 2b = 16
(ii)
๏ƒž 2b = 16 โ€“ 4
๏ƒž b = 16 โ€“ 4
๏ƒžb=
12
2
=6
9 x 4 + 2c = 12
๏ƒž 2c = 12 โ€“ 36
๏ƒžc=
๏€ญ
24
2
= -12
a=4
b=6
c = -12
20. If a+b+c=1 ,a2+b2+c2=9, a3+b3+c3=1 find
1 1 1
๐‘Ž
+ ๐‘ +๐‘
SOLUTION:
Since (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
ab+bc+ca =(1-9)/2 =-4
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
=1(9-(-4))
=13
โˆ’13+1
So,abc=
3
=-4
1 1 1
๐‘Ž
+ ๐‘ +๐‘ =
๐‘๐‘+๐‘๐‘Ž+๐‘Ž๐‘
๐‘Ž๐‘๐‘
=(-4)/(-4)
=1
21. The product of two of the four roots of x4-20x3+kx2+590x-1992 = 0 find k.
Solution:
If the roots be ฮฑ,ฮฒ, ๏ง , ๏ค then
ฮฑ +ฮฒ+ ๏ง ๏€ซ ๏ค = 20
(ฮฑ +ฮฒ)( ๏ง ๏€ซ ๏ค )+ ฮฑ ฮฒ+ ๏ง๏ค =k
(ฮฑ +ฮฒ) ๏ง๏ค +( ๏ง ๏€ซ ๏ค ) ฮฑ ฮฒ =-590
ฮฑ ฮฒ ๏ง๏ค =-1992
ฮฑ ฮฒ=24
๏ง๏ค =-1992/24
=-83
if ฮฑ +ฮฒ=x and ๏ง ๏€ซ ๏ค =y,
x+y=20
-83x+24y=-590
By solving x=10,y=10
K=(ฮฑ +ฮฒ)( ๏ง ๏€ซ ๏ค )+ ฮฑ ฮฒ+ ๏ง๏ค
=10.10+24-83
=41
22. Prove that 1< 1 + 1 + 1 +โ€ฆ+ 1
1001 1002
1003
3001
Solution:
Consider the numbers 1001,1002,..,3000,3001
A.M=
1001+1002+โ‹ฏ+3001
2001
2001
=
=
1
(1001+3001)2001
2
4002
2
=2001
1
1
1
1
HM = (1001 +1002 + 1003 +โ€ฆ+3001
) -12001
2001
=
1
1
1
1
+
+
+โ‹ฏ+
1001 1002 1003
3001
Since AM>HM,
2001
2001>
1
1
1
1
+
+
+โ‹ฏ+
1001 1002 1003
3001
1
1>
1
1
1
1
+
+
+โ‹ฏ+
1001 1002 1003
3001
1
1
1
1
+
+ 1003 +โ€ฆ+3001 > 1
1001 1002
Hence proved.
23. Let x be the set of positive integers โ‰ฅ 8.Let f:xโ†’x be a function,such that
f(x+y) =f(xy) for all xโ‰ฅ4,yโ‰ฅ4.If f(8)=9,determine f(9)
Solution:
f(9)=f(4+5)
=f(20)
=f(16+4)
=f(64)
=f(8.8)
=f(8+8)
=f(16)
=f(4.4)
=f(4+4)
=f(8)
=9
Thus f(9)=9.
24. Find the smallest value of the expression
4๐‘ฅ 2 +8๐‘ฅ+13
6(1+๐‘ฅ)
for xโ‰ฅ0
Solution:
4๐‘ฅ 2 +8๐‘ฅ+13
6(1+๐‘ฅ)
=
4(๐‘ฅ 2 +2๐‘ฅ+1)+9
6(1+๐‘ฅ)
=
=
4(๐‘ฅ+1)2 +9
6(1+๐‘ฅ)
4(๐‘ฅ+1)
=
๏œ
6
9
+6(๐‘ฅ+1)
2(๐‘ฅ+1)
3
2(๐‘ฅ+1)
3
3
+2(๐‘ฅ+1)
3
+2(๐‘ฅ+1) โ‰ฅ 2
1
Since it is of the form a+๐‘Ž where a>0
Since (a-1)2โ‰ฅ0 and a>0
(a-1)2/a โ‰ฅ0
(a2-2a+1)/aโ‰ฅ0
a-2+(1/a)โ‰ฅ0
a+1/aโ‰ฅ2
Thus smallest value of the expression is 2.
25. Prove that without using tables or calculators,1993 > 1399 .
Solution:
19
361
Consider (13)2 = 169 > 2
19
โˆด ( 13)8 > 24 > 13.
Thus 198 > 139
(198 )11 > (139 )11
1988 > 1399
โˆด 1993 > 1399 .
26. If2๐‘ฅ + 3๐‘ฆ = 7, and ๐‘ฅ โ‰ฅ 0, ๐‘ฆ โ‰ฅ 0,then find the greatest value of ๐‘ฅ 3 ๐‘ฆ 4
Solution:
2๐‘ฅ 3 3๐‘ฆ 4 3 3 4 4
Let Z=๐‘ฅ 3 ๐‘ฆ 4 =( 3 ) ( 4 ) (2) (3) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(i)
2๐‘ฅ 3 3๐‘ฆ 4
โˆด Z will have maximum value when ( 3 ) ( 4 ) is maximum.
2๐‘ฅ 3 3๐‘ฆ 4
But ( 3 ) ( 4 ) is the product of 3+4=7 factors,
2๐‘ฅ
3๐‘ฆ
the sum of which =3( 3 ) + 4 ( 4 ) = 2๐‘ฅ + 3๐‘ฆ = 7(๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก)
2๐‘ฅ 3 3๐‘ฆ 4
โˆด ( 3 ) ( 4 ) will be maximum if all the factors are equal,
i.e if
2๐‘ฅ
3
=
3๐‘ฆ
4
=
2๐‘ฅ+3๐‘ฆ
3+4
7
=7=1
2๐‘ฅ 3 3๐‘ฆ 4
โˆด from (i) the maximum value of Z=( 3 ) ( 4 ) (1)3 (1)4
27
=8 ๐‘‹
32
256
81
=3
27. Find the minimum value of bcx+cay+abz when xyz=abc
Solution:
We have xyz=abc
(bcx)(cay)(abz) =๐‘Ž3 ๐‘ 3 ๐‘ 3 =Z
n =3
1
minimum value of bcx+cay+abz=n(๐‘ง)๐‘›
=3(๐‘Ž3 ๐‘ 3 ๐‘ 3 )1/3
=3abc.
BY CHENNAI REGION:
Related documents