Download p66 - John Wrobel

Document related concepts
no text concepts found
Transcript
Lab Meeting
September 2001
John Wrobel
Outline
• Tour of HIV-1 RT
• DNA polymerization reaction
• b pol “THE MOVIE”
• Role of AA residues in HIV-1 RT database
HIV-1 Reverse Transcriptase
p66
p51
heterodimer
HIV-1 RT with DNA template
p66
p51
HIV-1 RT with DNA template
p66
p51
66 kd subunit
thumb
fingers
RNaseH
connection
palm
HIV-1 RT subunits
(primary sequence)
1
85
120
151
323
243
438
p66
fingers palm fingers palm
thumb
connection
p51
fingers palm fingers palm
thumb
connection
560
RNaseH
Conserved Sequence Motifs
Figure from CSH Symposia on Quant. Biol., Vol 53, pp 495-504 (1993)
Based on Protein Engineering 3, 461-467 (1990)
Catalytic Site (aspartic acid triad)
D110
D185
D186
p66 with DNA template
Active Site for Polymerization
D185
D186
aE
D110
aF
b9
b10
b6
Aspartic
Acid Triad
Fingers – Secondary structure
Element Sheet Residues
Element Sheet Residues
P1 – G18
b4
b1
P19 – Q23
b4 – aB
F77
b1 - aA
W24 – L26
aB
R78 – T84
aA
T27 – E44
aC –aD
L120 – D123
aA – b2
G45 – K46
aD
F124 – Y127
I47 – G51
b7
P52 – Y56
b7 – b8
N57 – I63
b8
K64 – K70
b8 – aE
b2
S1
b2 – b3
b3
b3 – b4
S2
S2
S1
W71 – D76
T128 – P133
S134 – T139
S1
P140 – Y146
N147 – P150
2 b-sheets: S1, S2
3 a-helices: aA, aB, aD
3 projecting loops: 21-45, 58-77, 130-144
a-helices A, B, D
aA
Fingers
aD
aB
Rasmol
b-sheet 1
Fingers
Rasmol
b-sheet 2
Fingers
Rasmol
Fingers
aA
S2
S1
aB
Rasmol
aD
NRTI residues in b3-b4
b3
b4
Rasmol
NRTI residues in b3-b4
b3
b4
Rasmol
K65
D67
T69
K70
L74
V75
2 loops involved in function
b3-b4
(p66)
b2-b3
(p51)
Rotation of Fingers
b3-b4 loop bends 20°
Thick line = unliganded
(open conformation)
Structure 7, R31-R35 (1999)
Thin line = complexed with DNA
(closed conformation)
Region critical for protein stability in
fingers subdomain of HIV-1 RT
p66
p51
Region critical for protein stability in
fingers subdomain of HIV-1 RT
loop
b8
b7
Region critical for protein stability in
fingers subdomain of HIV-1 RT
b7
b8
b3
b2
Critical protein stability residue R143
b7
R143
b8
Critical protein stability residue R143
R143
Hydophilic Interactions
T131
R143
Kinemage
N57
Hydrophobic residues critical for protein stability
I132
F130
Y144
Y146
Big Picture
Kinemage
Region critical for protein stability in
fingers subdomain of HIV-1 RT
p66
p51
Fingers
Residues 1-84
Residues 120-150
Rasmol
Hypothetical Folding Pathway
Denatured
(unfolded protein)
Folding Intermediates
Fig. 6-37 Voet
Native
(folded state)
Fingers
Residues 1-84
Residues 120-150
Rasmol
Palm – Secondary structure
Element
Sheet Residues
Element
Sheet
Residues
aB
Q85
b10
aB – b5
D86 – L92
b10 – aF
D192 – E194
b5
G93 – P97
aF
I195 – W212
b5 – b6
A98 – K103
aF – b11
G213
K104 – G112
b11
aC
D113 – V118
b11 – b12
aC – aD
P119
b12
b8 – aE
Q151 – W153
b12 – b13
aE
K154 – Q174
b13
aE – b9
N175 – D177
b13 – b14
I178 – Y183
b14
M184 – D185
b14 - aH
b6
b9
b9 – b10
S3
S3
2 b-sheets: S3, S4
3 a-helices: aC, aE, aF
S3
S3
D186 – S191
L214 – D218
K219 – P225
S4
P226 – M230
G231
S4
Y232 – H235
P236 – D237
S4
K238 – Q242
P243
a-helices C, E, F
aE
aC
Palm
Rasmol
aF
b-sheet 3
Palm
Rasmol
b-sheet 4
Palm
Rasmol
Palm
aE
aC
S3
S4
Rasmol
aF
S191/H198 interaction
Kinemage
Template Grip
Residue
Region
Subdomain
D76
b4
Fingers
E89
aB-b5
Palm
Q151
b8-aE
Palm
G152
b8-aE
Palm
K154
b8-aE
Palm
P157
aE
Palm
Template Grip
b8-aE loop:
• Q151 & G152 interact with sugar-phosphate backbone of Tem-1 & Tem1
• Main-chain atoms K154 with sugar-phosphate backbone of Tem1 & Tem2
• P157 maintain b8-aE loop and position Q151, G152, K154
aB –b5 loop:
• E89oe2 H-bonds with O3´ of Tem2
Biopolymer 44, 125-138 (1997)
Kinemage
Primer Grip
Residue
Region
Subdomain
W229
b12-b13
Palm
M230
b12-b13
Palm
G231
b12-b13
Palm
Y232
b12-b13
Palm
M230 & G231 interact with nucleotides of 3´-primer terminus
Kinemage
dNTP Pocket
• Triphosphate moiety is coordinated by K65, R72, main-chain –NH groups of D113 & A114
• Guanidinium group of R72 lies flat against dNTP base & H-bonds with a-phosphate
• E-amino group of K65 H-bonds with g-phosphate
• Main-chain –NH of Y115 H-bonds with O3* of dTTP
Structure = 1rtd
Science 282, 1669-1675 (1998)
Kinemage
Palm
Residues 85-119
Residues 151-243
Rasmol
Thumb – Secondary structure
Element
Sheet Residues
b14 - aH
I244 – W252
aH
T253 – S268
aH – aI
Q269 – K275
aI
V276 – K281
aI – aJ
L282 – E297
aJ
E298 – L310
aJ – b15
K311 – V314
b15
S4
b15 – b16
1 b-sheet: S4
3 a-helices: aH, aI, aJ
H315 – Y319
D320 – D322
a-helices H, I, J
Thumb
aH
aJ
Rasmol
aI
b-sheet 4
Palm
Thumb
Rasmol
Thumb
S4
aH
aJ
Rasmol
aI
Primer-Template interactions with Thumb
Helix H
• Q258, K259, G262, K263, W266 vdw with sugar-phosphate
backbone of Pri3 – Pri6
• Q258ne2 H-bond with sugar O4´ atom of Pri6
• K263nz salt bridge with phosphate O2P of Pri3
• N265nd2 H-bond with ribose O3´ of Tem6
Helix I
• S280, R284, G285, T286 vdw with sugar-phosphate
backbone of Tem7 – Tem9
• Amide N of G285 H-bonds O1P & O2P of Tem9
Biopolymer 44, 125-138 (1997)
Kinemage
Flexibility of Thumb
Kinemage
Unliganded RT (1dlo)
– thumb folded into DNA-binding cleft
DNA-bound RT (2hmi) Kinemage
– thumb adopts an upright position
Thumb’s knuckle = near residues W239 (b14) & V317 (b15)
Connection – Secondary structure
Element
Sheet Residues
b15 – b16
Element
Sheet Residues
K323 – L325
aK – b19
I326 – K331
b19
Q332 – G335
b19 – aL
P392 – Q394
Q336 – Y342
aL
K395 – E404
Q343 – N348
aL – b20
Y405 – Q407
L349 – A355
b20
S5A
A408 – P412
b18 – aK
R356 – N363
b21
S5
E413 – N418
aK
D364 – W383
b21 – bR1
b16
S5
b16 – b17
b17
S5
b17 – b18
b18
S5
1 b-sheet: S5 + S5A
2 a-helices: aK, aL
G384 – T386
S5
P387 – L391
T419 – A437
a-helices K and L
aL
aK
Rasmol
Connection
b-sheet 5
Connection
Rasmol
Connection
aK
aL
S5
Rasmol
S5a
Tryptophans in Connection
S5
Rasmol
S5a
Dimer Interface
p66
p51
Tryptophans at Dimer Interface
p66
p51
Kinemage
RNase H – Secondary structure
Element
Sheet Residues
bR1
R1
bR1 – bR2
bR2
R1
bR2 – bR3
bR3
R1
bR4 - aRB
D498 – S499
R448 – K451
aRB
Q500 – A508
L452 – T459
aRB - aRD
Q509 – S515
N460 – R461
aRD
E516 – K527
G462 – T470
aRD –
bR5
K528 – E529
D471 – T473
aRA
N474 – D488
aRA – bRA
S489 – L491
R1
Sheet Residues
E438 – N447
bR3 – aRA
bR4
Element
E492 – T497
bR5
R1
K530 – V536
bR5 - aRE
P537 – G543
aRE
G544 – G555
I556 – L560
1 b-sheet: R1
4 a-helices: aRA, aRB, aRD, aRE
a-helices RA, RB, RD, RE
aRB
RNase H
aRE
Rasmol
aRA
aRD
b-sheet R1
RNase H
Rasmol
RNase H
aRD
aRA
aRB
aRE
SR1
Rasmol
RNase H active site
D549
(aRE)
D443
H539
(bR5-aRE)
D498
(bR1)
(bR4-aRB)
E478
(aRA)
Kinemage
Rasmol
with DNA: Kinemage
a-Helices in HIV-1 RT
Helix Subdomain
A
fingers
B
fingers
C
palm
D
fingers
E
palm
F
palm
H
thumb
I
thumb
Helix Subdomain
J
thumb
K
connection
L
connection
RNase H
RA
RNase H
RB
RNase H
RD
RNase H
RE
Total = 15 a-helices
b-Sheets in HIV-1 RT
Sheet Strands
S1
S2
S3
S4
S5
S5A
R1
Subdomain
b2, b7, b8
fingers
b3, b4
fingers
b6, b9, b10, b11
palm
b12, b13, b14, b15
palm/thumb
b16, b17, b18, b19, b21 connection
b20
connection
bR1, bR2, bR3, bR4, bR5
RNase H
Total = 6 b-sheets
Action of DNA Polymerases
Voet Fig. 24-2
Steps in DNA polymerization
• Binding of template-primer
• Binding of incoming dNTP
• Phosphodiester bond formation
• Release of pyrophosphate
• Translocation / Dissociation
Step 1 in DNA polymerization
DNAn
E
E´—DNAn
Template-Primer binds to unliganded enzyme
Step 2 in DNA polymerization
dNTP
E´—DNAn
E´—DNAn—dNTP
Initiation of nucleotide incorporation
Step 3 in DNA polymerization
E´—DNAn—dNTP
E*—DNAn—dNTP
Conversion to an activated complex
Step 4 in DNA polymerization
PPi
E*—DNAn—dNTP
E—DNAn+1
SN2 nucleophilic attack by the 3'-OH primer terminus
on the a-phosphate of dNTP resulting in phosphodiester
formation and removal of pyrophosphate product
Action of DNA Polymerases- Another look
Nucleophilic attack by the
3' –OH catalyzes the phosphoDiester bond formation
Note that PPi is released
Nucleotides
Science 264, 1891-1903 (1994)
DNA Polymerization
Science 264, 1891-1903 (1994)
Active Site for Polymerization
D185
D186
aE
D110
aF
b9
b10
b6
Aspartic
Acid Triad
HIV-1 RT: Polymerase Active Site
Arnold
Current Opinion in Structural Biology
5, 27-38 (1995)
DNA polymerization at HIV-1 RT active site
Steitz
Figure from CSH Symposia on Quant. Biol., Vol 53, pp 495-504 (1993)
Based on Protein Engineering 3, 461-467 (1990)
Model of DNA polymerization at HIV-1 RT active site
Journal of Biomolecular Structure & Dynamics
12, 037-060 (1994)
Model of HIV-1 RT polymerase active site
Journal of Biomolecular Structure & Dynamics
12, 037-060 (1994)
pol b “THE MOVIE”
Coming to a URL near you
http://chem-faculty.ucsd.edu/kraut/bpol.html
Based on the Novel:
pol b
Smallest eukaryotic cellular DNA polymerase (39 kD)
pol b has 2 subunits:
• Nucleotidyl transfer activity (C-terminal 31 kD domain)
• Deoxyribosephosphate lyase activity (N-terminal 8 kD domain)
Role: Fills single nucleotide gaps in DNA produced
by the base excision pathway
Conformational changes of the THUMB during the catalytic cycle
Gray = ternary complex
Black = binary complex
Watch for motion of Thumb
& 8 kD domain
Biochemistry 36, 11205-11215 (1997)
Movie 1
View
Catalytic Aspartate 192
Gray = ternary complex
Black = binary complex
• With Thumb closure, F272 moves to disrupt R258-D192 H-bond
• D192 binds Mg
• E295 & Y296 position to H-bond with R258 (preventing R258 interference with D192)
Biochemistry 36, 11205-11215 (1997)
Movie 2
View
dNTP position
Gray = ternary complex
Black = binary complex
With Thumb closure, H-bond donors of helix K (S180, R183, G189)
interact with b- and g-phosphates of incoming dNTP
Biochemistry 36, 11205-11215 (1997)
Movie 3
View
Template Position
Gray = ternary complex
Black = binary complex
With Thumb closure, template is positioned
to base-pair with dNTP
Biochemistry 36, 11205-11215 (1997)
Movie 4
View
Role of AA in HIV-1 RT Database
List of fields:
• Amino Acid: P1, I2, S3, P4, …. D110 … S191 … W401 … L560
• Location: a-helices, b-sheets, loops, random coils
• Sheet: b-sheets
• Subdomain: fingers, palm, thumb, connection, RNase H
• Region: described in literature (example: primer-grip)
• Motif: motif A, motif C
• Role: from journal articles
• Structure: role from structure papers
• FSE: functional, stability, external residues (defined by HutchLab)
• Eickbush alignment
• Mutations: from other labs
• HutchLab: mutations made by Hutchison lab
• Inhibitor class: NNRTI, NRTI
• Resistance
John’s RT databases
• HIV-1 RT mutant data (phenotype & genotype)
from HutchLab & others
• Role of Amino Acid Residues in the HIV-1 RT
• HIV-1 RT H-bonds
• HIV-1 RT van der Waals interactions
• HIV-1 RT inhibitors
• Retro RT H-bonds (from models, except MMLV)
• Retro RT database (Eickbush alignment, variability)
• Procam Results for HIV-1 and other retro RTs
Alternative
classification
scheme for
the amino
acids
Related documents