Download H - Bonham Chemistry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chemistry 2100
Chapter 28
Carbohydrate Catabolism
• glycolysis: glucose
• TCA Cycle: acetyl CoA
pyruvate
acetyl CoA
CO2 + NADH / FADH2
• oxidative phosphorylation: NADH / FADH2
ATP
Glycolysis
H
C
H
OH
HO
H
O
AT P ADP
H
H
OH
H
OH
CH 2 OH
gluc ose
H
HO
he xokinase
M g +2
H
C
O
H
OH
OH
H
OH
-2
CH 2 O PO 3
gluc ose -6-phosphat e
OH
O
H
H
C
isome r ase
HO
H
(e ne diol)
H
OH
H
OH
-2
CH 2 O PO 3
fr uc tose -6-phosphate
H
C
H
OH
HO
H
O
AT P ADP
H
H
OH
H
OH
CH 2 OH
gluc ose
H
HO
he xokinase
M g +2
H
C
O
H
OH
OH
H
OH
-2
CH 2 O PO 3
gluc ose -6-phosphat e
OH
O
H
H
C
isome r ase
HO
H
(e ne diol)
H
OH
H
OH
-2
CH 2 O PO 3
fr uc tose -6-phosphate
H
C
H
OH
HO
H
O
AT P ADP
H
H
OH
H
OH
CH 2 OH
gluc ose
H
HO
he xokinase
M g +2
H
C
O
H
OH
OH
H
OH
-2
CH 2 O PO 3
gluc ose -6-phosphat e
OH
O
H
H
C
isome r ase
HO
H
(e ne diol)
H
OH
H
OH
-2
CH 2 O PO 3
fr uc tose -6-phosphate
H
C
H
OH
HO
H
O
AT P ADP
H
H
OH
H
OH
CH 2 OH
gluc ose
H
HO
he xokinase
M g +2
H
C
O
H
OH
OH
H
OH
-2
CH 2 O PO 3
gluc ose -6-phosphat e
OH
O
H
H
C
isome r ase
HO
H
(e ne diol)
H
OH
H
OH
-2
CH 2 O PO 3
fr uc tose -6-phosphate
H
C
H
OH
HO
H
O
AT P ADP
H
H
OH
H
OH
CH 2 OH
gluc ose
H
HO
he xokinase
M g +2
H
C
O
H
OH
OH
H
OH
-2
CH 2 O PO 3
gluc ose -6-phosphat e
OH
O
H
H
C
isome r ase
HO
H
(e ne diol)
H
OH
H
OH
-2
CH 2 O PO 3
fr uc tose -6-phosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
phosphofructokinase
hexokinase
Mg
+2
H
O
AT P ADP
HO
H
H
O
H
OH
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
hexokinase
Mg +2
H
O
AT P ADP
HO
H
H
O
H
OH
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
hexokinase
Mg +2
H
O
AT P ADP
HO
H
H
O
H
OH
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
HO
hexokinase
Mg +2
H
O
AT P ADP
H
H
•
•
H
O
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
OH
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
HO
hexokinase
Mg +2
H
O
AT P ADP
H
H
•
•
H
O
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
OH
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
HO
hexokinase
Mg +2
H
O
AT P ADP
H
H
•
•
H
O
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
OH
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
HO
hexokinase
Mg +2
H
O
AT P ADP
H
H
•
•
H
O
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
OH
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
-2
CH 2 O PO 3
O
HO
CH 2 O PO 3-2
HO
hexokinase
Mg +2
H
O
AT P ADP
H
H
•
•
H
O
•
aldolase
H
dihydroxyacetone
phosphate
(en ed iol)
H
OH
H
-2
CH 2 O PO 3
fru ctose-1,6-dip hosphate
H
•
O
OH
-2
CH 2 O PO 3
glyceraldehyde-3-p hosphate
O
H
H
C
H
O
C
OH
CH2O
glyceraldehyde
3-phosphate
+
PO3-2
NH 2
dehydrogenase
N
AD
HPO4-2
-2
O
C
NAD +
H
O PO3
OH
H O
C
H
+
••
CH2O
1,3-bisphospho
glycerate
-2
PO3
N
AD
NADH
NH 2
O
H
C
O
-2
PO3
O
A DP A TP
OH
CH2 O
-2
PO3
1,3
bisphospho
gly
ceric
a cid
1 ,3d ip h osp ha t e
glycerate
k ina se
Mg +2
H
C
O H
O
mut a se
OH
CH2 O
gly ceric a cid
3- p ho sph a t e
-2
PO3
H
C
OH
O
CH2 O
gly ceric a cid
2- p ho sph a t e
-2
PO3
H
O
H
C
O
-2
PO3
O
A DP A TP
OH
CH2 O
-2
PO3
gly bisphospho
ceric a cid
1,3
1 ,3- d ip h osp ha t e
glycerate
k ina se
Mg +2
H
C
O H
O
mut a se
OH
CH2 O
gly ceric a cid
3- p ho sph a t e
-2
PO3
H
C
OH
O
CH2 O
gly ceric a cid
2- p ho sph a t e
-2
PO3
H
O
H
C
O
-2
PO3
O
A DP A TP
OH
CH2 O
-2
PO3
glybisphospho
ceric a cid
1,3
1 ,3- d ip h osp ha t e
glycerate
k ina se
Mg +2
H
C
O H
O
mut a se
OH
CH2 O
gly
ceric a cid
3-phospho
3- p ho sph a t e
glycerate
-2
PO3
H
C
OH
O
CH2 O
gly ceric a cid
2- p ho sph a t e
-2
PO3
H
O
H
C
O
-2
PO3
O
A DP A TP
OH
CH2 O
-2
PO3
glybisphospho
ceric a cid
1,3
1 ,3- d ip h osp ha t e
glycerate
k ina se
Mg +2
H
C
O H
O
mut a se
OH
CH2 O
gly
ceric a cid
3-phospho
3- p ho sph a t e
glycerate
-2
PO3
H
C
OH
O
CH2 O
gly
ceric a cid
2-phospho
2- p ho sph a t e
glycerate
-2
PO3
H
O
H
C
O
-2
PO3
O
A DP A TP
OH
CH2 O
-2
PO3
gly ceric a cid
1 ,3- d ip h osp ha t e
k ina se
Mg +2
H
C
O H
O
mut a se
OH
CH2 O
gly ceric a cid
3- p ho sph a t e
-2
PO3
H
C
OH
O
CH2 O H
2-phospho
gly
ceric a cid
2p ho sph a t e
glycerate
-2
PO3
O
C
eno lase
H
( - H2O)
-2
O OPO3 OH
C A DP
A TP
O PO3- 2
OH
CH2 O
O
-2
POCH
3 2
gly ceric a cid
1 ,3- d ip h osp ha t e
k ina se
Mg +2
C
AD P ATP
H
k in ase
Mg +2
O O
H
OH
CH2 O
gly ceric a cid
3- p ho sph a t e
OH
C
mut a se
O H
-2
POCH
3 2
O
H
C
OH
O
CH2 O H
2-phospho
gly
ceric a cid
2p ho sph a t e
glycerate
-2
PO3
O
C
eno lase
OH
AD P ATP
O PO3- 2
( - H2O)
CH 2
O
k in ase
Mg +2
C
OH
O H
CH 2
O
C
eno lase
OH
AD P ATP
O PO3- 2
( - H2O)
CH 2
O
k in ase
Mg +2
C
OH
O H
CH 2
O
C
eno lase
OH
AD P ATP
O PO3- 2
( - H2O)
CH 2
O
k in ase
Mg +2
C
OH
O H
CH 2
O
C
eno lase
OH
AD P ATP
O PO3- 2
( - H2O)
CH 2
O
k in ase
Mg +2
C
OH
O
C
O H
CH 2
OH
O
CH2
H
pyruvic
pyruvateacid
Anaerobic Glycolysis
O
C
OH
O
NAD +
NAD H
O
CH3
pyruvic acid
pyruvate
+
H
C
OH
OH
H
H
HO
CH3
(–)-lactic
acid
lactic acid
Fermentation
O
C
OH
C O2
O
CH 3
pyruvic acid
pyruvate
deca rbo x y la se
H
O
CH 3
acetaldehyde
acetaldehyde
H
N A D+
N A DH
+
H
H
OH
CH 3
ethanol
ethanol
TriCarboxylic Acid Cycle Prep
O
C
OH
N AD+
O
CH 3
pyruvic a cid
pyruvate
+
H S
CoA
N ADH
S
CoA
O
+
(- H )
CH 3
a cet y l C oA
+
CO 2
• http://highered.mcgrawhill.com/sites/0072507470/student_view0/
chapter25/animation__how_glycolysis_wo
rks.html
Fatty Acids and Energy
Fatty acids in triglycerides are the principal storage
form of energy for most organisms.
– Hydrocarbon chains are a highly reduced form of carbon.
– The energy yield per gram of fatty acid oxidized is greater
than that per gram of carbohydrate oxidized.
Energy
Energy
-1
(k cal• mol ) (kcal• g -1)
C6 H1 2 O6 + 6 O2
Glucose
CH3 (CH2 ) 1 4 COOH + 2 3 O2
Palmitic acid
6 CO2 + 6 H2 O
686
3.8
1 6 CO2 +1 6 H2 O 2,340
9.3
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
O
CH3 (CH2 )12 CH2
HS CoA
thiokinase
CH2
C OH
2 ATP
1
2 ADP
O
CH3 (CH2 )12 CH2
CH2
C
S
CoA
FAD
2
dehydroge nase
FAD H2
O
CH3 (CH2 )12 CH
CH
C
S
CoA
H2O
hydrase
3
OH
CH3 (CH2 )12
CH
O
CH2
C S
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
back to 2
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
-oxidation
OH
CH 3 (CH 2 )12
back to 2
O
CH
CH 2
C S
CoA
NAD +
4
dehydroge nase
NAD H
O
CH 3 (CH 2 )12
O
C
CH 2
thiolase
HS
C S
C
5
CoA
O
CH 3 (CH 2 )12
CoA
O
S
CoA
+
CH 3
C S
repeat 6 time s
CoA
O
CH 3 (CH 2 ) 14
C S
CoA + 7 H2 O + 7 FAD + 7 NAD
+
+ 7 HS
O
8 CH 3 C S
+
CoA + 7 FAD H2 + 7 NAD H + 7 H
CoA
Energy Yield on -Oxidation
• Yield of ATP per mole of stearic acid (C18).
Step Chemical Step
Happ ens ATP
1
Activation (stearic
acid -> stearyl CoA)
Once
-2
2
Oxidation (acyl CoA —>
trans-enoyl CoA)
produces FA D H 2
8 times
16
4
Oxidation (hydroxy8 times
acyl CoA to ketoacyl
CoA ) produ ces N A D H +H +
24
Oxidation of acetyl CoA
9 times
by the common metabolic
path w ay, etc.
TOTAL
108
146
Ketone Bodies
• Ketone bodies: Acetone, -hydroxybutyrate, and
acetoacetate;
– Are formed principally in liver mitochondria.
– Can be used as a fuel in most tissues and organs.
• Formation occurs when the amount of acetyl CoA
produced is excessive compared to the amount of
oxaloacetate available to react with it and take it into the
TCA; for example:
– Dietary intake is high in lipids and low in carbohydrates.
– Diabetes is not suitably controlled.
– Starvation.
Ketone Bodies
O
2 CH3 C-SCoA
Acetyl-CoA
HS-CoA
O
O
CH3 CCH2 C-SCoA
Acetoacetyl-CoA
O
NADH
OH
CH3 -C-CH2 -COOCH3 -CH-CH2 -COOA cetoacetate
NAD+ + H+ -Hyd roxybutyrate
CO2
O
CH3 -C-CH3
Acetone
Protein Catabolism
Related documents