Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chemistry 2100 Chapter 28 Carbohydrate Catabolism • glycolysis: glucose • TCA Cycle: acetyl CoA pyruvate acetyl CoA CO2 + NADH / FADH2 • oxidative phosphorylation: NADH / FADH2 ATP Glycolysis H C H OH HO H O AT P ADP H H OH H OH CH 2 OH gluc ose H HO he xokinase M g +2 H C O H OH OH H OH -2 CH 2 O PO 3 gluc ose -6-phosphat e OH O H H C isome r ase HO H (e ne diol) H OH H OH -2 CH 2 O PO 3 fr uc tose -6-phosphate H C H OH HO H O AT P ADP H H OH H OH CH 2 OH gluc ose H HO he xokinase M g +2 H C O H OH OH H OH -2 CH 2 O PO 3 gluc ose -6-phosphat e OH O H H C isome r ase HO H (e ne diol) H OH H OH -2 CH 2 O PO 3 fr uc tose -6-phosphate H C H OH HO H O AT P ADP H H OH H OH CH 2 OH gluc ose H HO he xokinase M g +2 H C O H OH OH H OH -2 CH 2 O PO 3 gluc ose -6-phosphat e OH O H H C isome r ase HO H (e ne diol) H OH H OH -2 CH 2 O PO 3 fr uc tose -6-phosphate H C H OH HO H O AT P ADP H H OH H OH CH 2 OH gluc ose H HO he xokinase M g +2 H C O H OH OH H OH -2 CH 2 O PO 3 gluc ose -6-phosphat e OH O H H C isome r ase HO H (e ne diol) H OH H OH -2 CH 2 O PO 3 fr uc tose -6-phosphate H C H OH HO H O AT P ADP H H OH H OH CH 2 OH gluc ose H HO he xokinase M g +2 H C O H OH OH H OH -2 CH 2 O PO 3 gluc ose -6-phosphat e OH O H H C isome r ase HO H (e ne diol) H OH H OH -2 CH 2 O PO 3 fr uc tose -6-phosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 phosphofructokinase hexokinase Mg +2 H O AT P ADP HO H H O H OH • aldolase H dihydroxyacetone phosphate (en ed iol) H H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 hexokinase Mg +2 H O AT P ADP HO H H O H OH • aldolase H dihydroxyacetone phosphate (en ed iol) H H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 hexokinase Mg +2 H O AT P ADP HO H H O H OH • aldolase H dihydroxyacetone phosphate (en ed iol) H H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 HO hexokinase Mg +2 H O AT P ADP H H • • H O • aldolase H dihydroxyacetone phosphate (en ed iol) H OH H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 HO hexokinase Mg +2 H O AT P ADP H H • • H O • aldolase H dihydroxyacetone phosphate (en ed iol) H OH H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 HO hexokinase Mg +2 H O AT P ADP H H • • H O • aldolase H dihydroxyacetone phosphate (en ed iol) H OH H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 HO hexokinase Mg +2 H O AT P ADP H H • • H O • aldolase H dihydroxyacetone phosphate (en ed iol) H OH H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate -2 CH 2 O PO 3 O HO CH 2 O PO 3-2 HO hexokinase Mg +2 H O AT P ADP H H • • H O • aldolase H dihydroxyacetone phosphate (en ed iol) H OH H -2 CH 2 O PO 3 fru ctose-1,6-dip hosphate H • O OH -2 CH 2 O PO 3 glyceraldehyde-3-p hosphate O H H C H O C OH CH2O glyceraldehyde 3-phosphate + PO3-2 NH 2 dehydrogenase N AD HPO4-2 -2 O C NAD + H O PO3 OH H O C H + •• CH2O 1,3-bisphospho glycerate -2 PO3 N AD NADH NH 2 O H C O -2 PO3 O A DP A TP OH CH2 O -2 PO3 1,3 bisphospho gly ceric a cid 1 ,3d ip h osp ha t e glycerate k ina se Mg +2 H C O H O mut a se OH CH2 O gly ceric a cid 3- p ho sph a t e -2 PO3 H C OH O CH2 O gly ceric a cid 2- p ho sph a t e -2 PO3 H O H C O -2 PO3 O A DP A TP OH CH2 O -2 PO3 gly bisphospho ceric a cid 1,3 1 ,3- d ip h osp ha t e glycerate k ina se Mg +2 H C O H O mut a se OH CH2 O gly ceric a cid 3- p ho sph a t e -2 PO3 H C OH O CH2 O gly ceric a cid 2- p ho sph a t e -2 PO3 H O H C O -2 PO3 O A DP A TP OH CH2 O -2 PO3 glybisphospho ceric a cid 1,3 1 ,3- d ip h osp ha t e glycerate k ina se Mg +2 H C O H O mut a se OH CH2 O gly ceric a cid 3-phospho 3- p ho sph a t e glycerate -2 PO3 H C OH O CH2 O gly ceric a cid 2- p ho sph a t e -2 PO3 H O H C O -2 PO3 O A DP A TP OH CH2 O -2 PO3 glybisphospho ceric a cid 1,3 1 ,3- d ip h osp ha t e glycerate k ina se Mg +2 H C O H O mut a se OH CH2 O gly ceric a cid 3-phospho 3- p ho sph a t e glycerate -2 PO3 H C OH O CH2 O gly ceric a cid 2-phospho 2- p ho sph a t e glycerate -2 PO3 H O H C O -2 PO3 O A DP A TP OH CH2 O -2 PO3 gly ceric a cid 1 ,3- d ip h osp ha t e k ina se Mg +2 H C O H O mut a se OH CH2 O gly ceric a cid 3- p ho sph a t e -2 PO3 H C OH O CH2 O H 2-phospho gly ceric a cid 2p ho sph a t e glycerate -2 PO3 O C eno lase H ( - H2O) -2 O OPO3 OH C A DP A TP O PO3- 2 OH CH2 O O -2 POCH 3 2 gly ceric a cid 1 ,3- d ip h osp ha t e k ina se Mg +2 C AD P ATP H k in ase Mg +2 O O H OH CH2 O gly ceric a cid 3- p ho sph a t e OH C mut a se O H -2 POCH 3 2 O H C OH O CH2 O H 2-phospho gly ceric a cid 2p ho sph a t e glycerate -2 PO3 O C eno lase OH AD P ATP O PO3- 2 ( - H2O) CH 2 O k in ase Mg +2 C OH O H CH 2 O C eno lase OH AD P ATP O PO3- 2 ( - H2O) CH 2 O k in ase Mg +2 C OH O H CH 2 O C eno lase OH AD P ATP O PO3- 2 ( - H2O) CH 2 O k in ase Mg +2 C OH O H CH 2 O C eno lase OH AD P ATP O PO3- 2 ( - H2O) CH 2 O k in ase Mg +2 C OH O C O H CH 2 OH O CH2 H pyruvic pyruvateacid Anaerobic Glycolysis O C OH O NAD + NAD H O CH3 pyruvic acid pyruvate + H C OH OH H H HO CH3 (–)-lactic acid lactic acid Fermentation O C OH C O2 O CH 3 pyruvic acid pyruvate deca rbo x y la se H O CH 3 acetaldehyde acetaldehyde H N A D+ N A DH + H H OH CH 3 ethanol ethanol TriCarboxylic Acid Cycle Prep O C OH N AD+ O CH 3 pyruvic a cid pyruvate + H S CoA N ADH S CoA O + (- H ) CH 3 a cet y l C oA + CO 2 • http://highered.mcgrawhill.com/sites/0072507470/student_view0/ chapter25/animation__how_glycolysis_wo rks.html Fatty Acids and Energy Fatty acids in triglycerides are the principal storage form of energy for most organisms. – Hydrocarbon chains are a highly reduced form of carbon. – The energy yield per gram of fatty acid oxidized is greater than that per gram of carbohydrate oxidized. Energy Energy -1 (k cal• mol ) (kcal• g -1) C6 H1 2 O6 + 6 O2 Glucose CH3 (CH2 ) 1 4 COOH + 2 3 O2 Palmitic acid 6 CO2 + 6 H2 O 686 3.8 1 6 CO2 +1 6 H2 O 2,340 9.3 -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation O CH3 (CH2 )12 CH2 HS CoA thiokinase CH2 C OH 2 ATP 1 2 ADP O CH3 (CH2 )12 CH2 CH2 C S CoA FAD 2 dehydroge nase FAD H2 O CH3 (CH2 )12 CH CH C S CoA H2O hydrase 3 OH CH3 (CH2 )12 CH O CH2 C S CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 back to 2 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA -oxidation OH CH 3 (CH 2 )12 back to 2 O CH CH 2 C S CoA NAD + 4 dehydroge nase NAD H O CH 3 (CH 2 )12 O C CH 2 thiolase HS C S C 5 CoA O CH 3 (CH 2 )12 CoA O S CoA + CH 3 C S repeat 6 time s CoA O CH 3 (CH 2 ) 14 C S CoA + 7 H2 O + 7 FAD + 7 NAD + + 7 HS O 8 CH 3 C S + CoA + 7 FAD H2 + 7 NAD H + 7 H CoA Energy Yield on -Oxidation • Yield of ATP per mole of stearic acid (C18). Step Chemical Step Happ ens ATP 1 Activation (stearic acid -> stearyl CoA) Once -2 2 Oxidation (acyl CoA —> trans-enoyl CoA) produces FA D H 2 8 times 16 4 Oxidation (hydroxy8 times acyl CoA to ketoacyl CoA ) produ ces N A D H +H + 24 Oxidation of acetyl CoA 9 times by the common metabolic path w ay, etc. TOTAL 108 146 Ketone Bodies • Ketone bodies: Acetone, -hydroxybutyrate, and acetoacetate; – Are formed principally in liver mitochondria. – Can be used as a fuel in most tissues and organs. • Formation occurs when the amount of acetyl CoA produced is excessive compared to the amount of oxaloacetate available to react with it and take it into the TCA; for example: – Dietary intake is high in lipids and low in carbohydrates. – Diabetes is not suitably controlled. – Starvation. Ketone Bodies O 2 CH3 C-SCoA Acetyl-CoA HS-CoA O O CH3 CCH2 C-SCoA Acetoacetyl-CoA O NADH OH CH3 -C-CH2 -COOCH3 -CH-CH2 -COOA cetoacetate NAD+ + H+ -Hyd roxybutyrate CO2 O CH3 -C-CH3 Acetone Protein Catabolism