Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
NAME ________________________________________________ DATE ______________________ PERIOD _______ REVIEW Unit 1 Test reasoning and proof Use the figure to name each term using the appropriate symbols to designate. 1. plane 2. angle 3. point plane A point L ∠LTQ 4. line 5. ray 6. segment 𝑇𝐿 𝑇𝑄 𝑆𝑇 **** answers may vary **** State the property of equality, property of congruence or postulate that justifies each statement. 7. If a + 7 = 20, then a = 13 8. If AB = CD and CD = EF, then AB = EF subtraction property (=) transitive property 𝑥 −6 If U is between T and V, then UV = UT + TV segment addition postulate 12. If 4(x - 3) = 16, then 4x - 12 = 16. distributive property 14. If ¾ = 0.75, then 0.75 = ¾. symmetric property 16. If the m∠1 = 45 and m∠2 = 45, then m∠1 = m∠2. substitution property (=) = 2, then 𝑥 = −12. multiplication property (=) 11. If 4x = -x + 20, then 5x = 20 addition property (=) 13. TP = TP reflexive property 15. If 2BC = 2DE, then BC = DE division property (=) 9. If 10. Find the measure of each numbered angle and name the theorems that justify your work. 17. m∠13 = 4x + 11 m∠14 = 3x + 1 18. m∠2 = 4x - 26 m∠3 = 3x + 4 19. m∠4 = 2x - 5 m∠5 = 4x - 13 m∠13 = 107 m∠14 = 73 m∠2 = 94 m∠3 = 94 m∠4 = 31 m∠3 = 59 supplementary thm vertical angle thm compl. thm, vert. angle Find the value of x and state any theorems and/or postulates used to support your answer. 20. 21. x = 14 y = 37 vert. angle, corresp, alt. int 22. x = 49 or maybe 28…? y = 23 suppl, corresp, alt. int x = 74 y = 37 z = 25 corresponding, suppl. Find x so that l || m . Identify the postulate or theorem you used. 23. 24. x = 12 corresponding 25. x = 21 alternate exterior x=9 alternate interior Using the diagram, give the reason that justifies each statement. definition of supplementary or 26. ∠𝑊𝑅𝑋 + ∠𝑍𝑅𝑋 = 180 linear pair 27. ∠𝑊𝑅𝑌 + ∠𝑌𝑅𝑍 = ∠𝑊𝑅𝑍 angle additon postulate 28. If 𝑅𝑋 ⊥ 𝑅𝑌, then ∠𝑋𝑅𝑌 is a right angle. 29. If R is the midpoint of 𝑊𝑍, then 𝑊𝑅 ≅ 𝑅𝑍. 30. If 𝑅𝑌 bisects ∠𝑍𝑅𝑋, then ∠𝑌𝑅𝑋 ≅ ∠𝑌𝑅𝑍. definition of perpendicular midpoint theorem angle bisector theorem Complete each statement. 31. Two angles whose measure add up to 90° are ________________________. commplementary 32. consecutive interior angles If 2 parallel lines are cut by a transversal, _______________________ are not necessarily congruent. 33. Two angles whose measure add up to 180° are 34. Two angles are congruent if they are ______________________. vertical 35. alternate interior __________________________ are the pair of angles created inside parallel lines, located on opposite sides of the transversal cutting the parallel lines. supplementary Fill in the missing steps and justifications. 36. Given: -6(2x + 1) + x = 16 Prove: x = -2 STATEMENTS a. -6(2x + 1) + x = 16 b. -12x - 6 + x = 16 c. -11x - 6 = 16 d. -11x - 6 + 6 = 16 + 6 e. -11x = 22 f. -11x/-11 = 22/-11 g. x = -2 REASONS f. g. given distributive property subs or simplify addition prop (=) subs or simplify division prop (=) subs or simplify a. given b. def of congruent segments def of midpoint segment addition subs property subs property simplify division property (=) def of congruent segments a. b. c. d. e. 37. a. b. c. d. e. f. g. h. i. STATEMENTS C is the midpoint of AE. C is the midpoint of BD. AE ≅ BD AE = BD AC = CE, BC = CD AC + CE = AE, BC + CD = BD AC + CE = BC + CD AC + AC = CD + CD 2AC= 2CD AC = CD AC ≅ CD REASONS c. d. e. f. g. h. i. WORD BANK congruent complementary consecutive interior vertical alternate interior supplementary adjacent 38. 39. 40. Given: ∠1 ≅ ∠3 and AC ∥ BD Prove: A𝐵 ∥ CD STATEMENTS a. ∠1 ≅ ∠3, AC || BD b. ∠2 ≅ ∠3 c. ∠1 ≅ ∠2 d. AB || CD Given: FL = AT Prove: FA = LT STATEMENTS a. FL = AT b. LA = LA c. FL + LA = AT + LA d. FL + LA = FA AT + LA = LT e. FA = LT a. b. c. d. REASONS given corresponding angle post. transitive postulate if alt angles are ≅, then lines are || REASONS given b. reflexive c. addition property of = d. segment additon property a. e. Given: ∠1 ≅ ∠3 Prove: ∠1 ≅ ∠4 STATEMENTS substitution REASONS a. ∠1 ≅ ∠3 a. b. ∠3 ≅ ∠4 c. ∠1 ≅ ∠4 b. c. given vertical angles are congruent substitution