Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
C-16 Center of Gravity Conjecture The centroid of a Hiangle is Ihe cenler of gravill' of Ih,' Iriangular region, (Lesson 3,8) " Conjectures Chapter 2 Chapter 4 C·l Linear Pair Conjecture If two angles form a linear pair. Ihen the measures of Ihe angb aJJ up 10 180°, (Lesson 2,5) C·2 Vertical Angles Conjecture If two angles are vertical angles, Ihen Ihe" Jr,' (nnp-rU,'''1 (have equal measures), (Lesson 2.5) C-17 Triangle Sum Conjecture The sum of Ihe measures of Ihe angles in every "iangle is 180°, (Lesson 4.1) C-18 Third Angle Conjecture If two angles of one Iriangle are equal in meJ,ure 10 1"'0 angb of another triangle. then the third angle in each trian~le is equal in Illeasure 10 Ih,' IhirJ angle in the other triangle. (Lesson 4, I) C-3a C-19 Isosceles Triangle Conjecture If a Iriangle is isosceles. then its base angles are congruent. (Lesson 4.2) Corresponding Angles Conjecture, or CA Conjecture If two parJlleiline, are (UI hl' J transversal. Ihen corresponding angles are congruent. (Lesson 2,6) C-3b C-20 Converse of the Isosceles Triangle Conjecture If a triangle has IwO congruenl angles, then il is an isosceles triangle. (Lesson 4,2) Alternate Interior Angles Conjecture, or AlA Conjecture If two parallel lines are cui I a Hansversal. then ahernale interior angles are congruent. (Lesson 2,6) C-3c C-21 TrilnglelnequaUty Conjecture The sum of the lenglhs of any 11"0 siJes of a IriJllgk is grealer than the length of lhe third side, (Lesson 4.3) Alternate Exterior Angles Conjecture, or AEA Conjecture If (WO pJrallei hnes arc Clil hI' a IrJnSVersal. Ihen ahernate exterior angles are congruent. (Lesson 2,6) C-3 Parallel Lines Conjecture If Iwo parall,'1 lines are Cui hl' a Iran",ersJI. Ih,'n C·22 C-23 C-24 C-25 Slde-AnglelnequaUty Conjecture In a Iriallgle, if on,' side i, IOIl~,'r Ih.1l1 allo,h", ,iJ,', Ihen Ihe angle opposile Ihe longer siJe is IJrger IhJn Ihe Jn~Ic' "1'1""ilc 11ll' ,h"flcf ,ide'. (Lesson 4.31 SSS Congruence Conjecture If Ihe Ihree sides "I' ou,' Iri.lI1gk sides of anolher Iriangle. then the Iriallgks Jr,' ((lngrll""!. ,lI,' ,·""~rtll'nl I" Ih,' ,I'f",' ,I.",,", ·1.-11 SAS Congruence Conjecture '1',,,,,, siJ,'s Jnd Ih,' in,lude'l1 ,lllgl,' '" congruent to t\Yo sides and the induJl'd C-27 C-4 JIlg,!l' of Jlllllht'r 11"1.1I1~h:. thl'l\ 'Ill' 1\\'0 angks anJ.1 IHIU·II1,III.kd ,id,' ", on,' lli,lll~k ,II" congrUl'n1 10 the corresponding Jngl\'~ ,111..1 >idl,,' 0" .Uhtlhl'r trl.",~lc. lhell Ih..., 1ft.111~ll·' Ijlll':- Jrl' Perpendicular Bisector Conjecture :-l·~llll·lll. 111VII II I' 1,:qllidl"·d.1I1[ lrolll lrl.lll;:h:" .11\' C-6 (·7 p.H.llkl. If.1 tllt" p(lint I.... IHI lilt' ptTpl'lhlltllJ.ll" 1,: 11 d PtlJlll:--. Ilt":"Il]} C-29 Equilateral/Equiangular Triangle Conjecture h,'[I' ,',!uiL'1l"I,tI Ir\.lll"k " "'i'Il,II',,,,L'L Con\"l~rselr, ~\'ery equiJngular (fiJIl~dl' i) l'quiJ.lIl'f,i1. Ilt':"'I111 .I.~ I , (-8 Shortest Distance Conjecture Th . : Angle Bisector Conjecture II Irplll C·g ,h ..: 111\' 10111 ,11l;-:k, \11 ,111\ C-l0 ,idl'''' Lli lill' .11I~k'. ,I POlllt j, IIIl Ilt·...... t)11 Ih..., Pentagon Sum Conjecture is 180°(11 - 2). (Lesson 5.1) I' Ilh· .... llft·d bi'l'llt'l III .111 .11l::k. 1111.:11 i' i.. r.:quidl"I.JI 5.~ I ,11\~k hi"',I'''' '" ,'lil"",:k ,1\, C-11 Altitude Concurrency Conjecture C-12 ,,1.1 It 1.111:: It' .lIt· l Circumcenter Conjecture .1 t·".I\) .\.7 nil ... III "I J.-:, '1Ilt' linn' ,1I11111dt" I Ill' lilt' llllt· ...... dlll.lllliJl~ 1I1l' It'll (. I I t· ...... t 111 ~.:-. 'Iht' \lldlllht'llh:1 \11 .1 111.111~1,· I' t'ljllhli'l.lI11 1"11111 11\\" \~·llh.~·· I Thl' ~llln ,,(llll' 11\t:.I:-url·' of (Ilt' li\~' .111:-:k, 1'1 .111\ Pl'llt.I;:t11l is 540°, ILesson 5, I ) (·32 Polygon Sum Conjecture The sum of 'Ill' I1ll·J:-.urC'" lillI.' II I h.:. ! 1''':''1111 _, ..;, Perpendicular Bisector Concurrency Conjecture '1 he' ,111"( 1"'11"'1\.1" 1\1.1\ hi,,','I<." .1 lll.lll!~k .lrt· \1111\ III ft'llL II t' ,...... I 111 qUJJrilaleral is 360°, (Lessol\ 5, I 1 C·31 hl,r.:~·ltlr Ill' .1 .'.~ I :-hnrh'"'l dhl.Hh.\' Irllm .1 pllllll Itl ,I Angle Bisector Concurrency Conjecture rh,· Ihr,'" ,1111 [ 11\ I~ ~ Thl' :-WIl \II lilt' Illt·,btLl\' ... III I'm", \,.OlhlJll'l·1l1 Illln'l .1\ .1 !'(lilill. (l.t·~~t11l .'.~ I Chapter 5 (·30 Quadrilateral Sum Conjecture 10' Converse of the Perpendicular Bisector Conjecture II " 1'''"11 " '·'luid"\.I11\ """' I ill' l'lhll'PIIU' n(.1 ;-'l·~lIh.'lIl. lIh.'1l it i.. tll1 !III,: j1l,.·!I'l,.'lhhtuLtr hi'l'I[\l1 III I Ill' 'l·~l\\I.·lll. I Il·.... Pll 3.~ I congruent. (Lesson 4.5) Vertex Angle Bisector Conjecture In In i,,,,,d,,, II i,lngk, Ih, hi,,', ,,,' "i 'he' I CI k ' angle is also Ihe ahilUJe anJ Ihc lIleJiJIl '" Ih,' h.I,,,- 11,""'" 4.:';; H.II,,'w,.t1 {ll""'lill ~.() I .t1'IIl;': IIh: p(rpl'lh..lilUI., .. ,,,:;':'Ilh.:IH llulll t!I\' 11llilll tl\ till" .lll· C·28 ,I Chapter 3 Iri.lI1~k ",,' ASA Congruence Conjecture If 1\V1I Jngb 'InJ Ih,' illcluJ"d ",k "i ,,,,,' Irr,II1gk ,Ir,' congruenl to tWo angles and the illl,:luJ\.'d :-.idl' of Jlhllhl'r 1r1.IIlSlt', thl'Jl lih.' lI"i.lIl~k·" .Ilt' congruent. (Lesson 4.5) SAA Congruence Conjecture If .1111.:1"11.1"': . : "h:rill" .1I\~ks, lhl'll Iht' (-5 'lilt' 2.(l1 Converse of the Parallel lines Conjecture If two li"es arc Clil 1>1' p.lir, til lOlll:!rlll.:1l1 (nrrt.')ponJlIlg 'lU~ks, \,:ong.rul'llt ahl'rn.llt.' illtL'rior .tI1gk), or . . oll~nh.·111 'x"rlangle Exterior Angle Conjecture The measure of In eXl",ior .Illglc of J Iri'lIlgk i, equJI to the sum of the nlt"3sures of thl' rt.'I1Wll' inh:ritlf JIt!!h::<o. 11.',::-':-'011 .1..' I congruent. (Lesson 4.4) C·26 l,.(lrll,.·:-'ll~llldillg Jllglt':- .lr,,: lOllgrw:ll1. Jlh,:rnJh.' interior .11l~le:-. arl' ,,:ollgnlt'1l1. and .t1ll'rn.lIl' l'xh,:rin ...tI1gk~ ..H e l·OIl~rth.'lli. {I.,:~~on 1'1 ,h\,.· 11 lIlkn,H .1I1:-:k, 'Iht' ilh:I..'llh:r \11 .1 1II,\II~h.: 1:- (,:qllilli,t,t111 lI'llH !Ill' C-13 Incenter Conjecture C-14 Median Concurrency Conjecture II t· ...... l II I .'.I'! C-15 Centroid Conjecture Ill' ,Itl II ;':L111 l11 \,: '1 ilt' ... t'lllrnid tl(.\ Ifl.lIl~.dl..· tll\'jlk, c.lth l1lt'dl,lll Illln t\\'o p,lI't-. 'LI dUI rill' di'l.llht' Iflllll lilt" (t'llirtlid III lilt' l1lidpllilll ,i"k". clt·, .... 11l Tilt' Illft't' 11It.:di,llb III ,I IIUll;.:k ,Ill' tlll\lllfl t'lll. thl' \lTk\ I.' l\\·itl" lilt' dl'1.1Ikt· 11'0111 (lIt' It'llllllld 1\ tilt' t1PPO:-llt' ~jdl..·. llt':-'tlll .U":l