Download Analytical Dynamics Homework 7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Analytical Dynamics Homework 7 - Solution
Use Lagrange’s Equations to determine the equations of motion for the following systems.
Problem 1: The cart with mass 4m rolls without friction on the ground and is attached to the wall
with a spring of stiffness 2k. The cart forms a wedge with interior angle ΞΈ. On top of the cart is a
smaller mass which is attached with a spring of stiffness k. Determine the equations of motion for
the system.
Solution: This is a 2DOF problem, and we choose as generalized coordinates the horizontal
displacement of the cart, x, and the movement of the block along the top of the cart, s. The
movements of the cart and block are given by
π‘₯
𝐫𝑐 = { }
0
π‘₯ + 𝑠 cos πœƒ
𝐫𝑏 = {
}
βˆ’π‘  sin πœƒ
The velocities of each mass are
π‘₯Μ‡
𝐫̇𝑐 = { }
0
π‘₯Μ‡ + 𝑠̇ cos πœƒ
𝐫̇𝑏 = {
}
βˆ’π‘  sin πœƒ
The kinetic energy of the cart is
𝑇𝑐 =
1
(4π‘š)𝐫̇𝑐 β‹… 𝐫̇𝑐 = 2π‘šπ‘₯Μ‡ 2
2
And the kinetic energy of the block is
𝑇𝑏 =
1
1
π‘šπ«Μ‡π‘ β‹… 𝐫̇𝑏 = π‘š(π‘₯Μ‡ 2 + 2π‘₯Μ‡ 𝑠̇ cos πœƒ + 𝑠̇ 2 )
2
2
Thus, the total kinetic energy is
1
𝑇=
1
π‘š(5π‘₯Μ‡ 2 + 2π‘₯Μ‡ 𝑠̇ cos πœƒ + 𝑠̇ 2 )
2
The potential energy is provided by the springs and gravity:
1
1
𝑉 = (2π‘˜)π‘₯ 2 + π‘˜π‘  2 βˆ’ π‘šπ‘”π‘  sin πœƒ
2
2
Now take the appropriate derivatives
πœ•π‘‡
= π‘š(5π‘₯Μ‡ + 𝑠̇ cos πœƒ)
πœ•π‘₯Μ‡
πœ•π‘‡
= π‘š(𝑠̇ + π‘₯Μ‡ cos πœƒ)
πœ•π‘ Μ‡
𝑑 πœ•π‘‡
( ) = π‘š(5π‘₯̈ + π‘ Μˆ cos πœƒ)
𝑑𝑑 πœ•π‘₯Μ‡
𝑑 πœ•π‘‡
( ) = π‘š(π‘ Μˆ + π‘₯̈ cos πœƒ)
𝑑𝑑 πœ•π‘ Μ‡
πœ•π‘‡
=0
πœ•π‘₯
πœ•π‘‡
=0
πœ•π‘ 
πœ•π‘‰
= 2π‘˜π‘₯
πœ•π‘₯
πœ•π‘‰
= π‘˜π‘  βˆ’ π‘šπ‘” sin πœƒ
πœ•π‘ 
Thus, the equations of motion for the system are
π‘š(5π‘₯̈ + π‘ Μˆ cos πœƒ) + 2π‘˜π‘₯ = 0
π‘š(π‘ Μˆ + π‘₯̈ cos πœƒ) + π‘˜π‘  = π‘šπ‘” sin πœƒ
Or, in matrix form
[
5
cos πœƒ
2π‘˜π‘₯⁄
cos πœƒ π‘₯̈
π‘š
]{ } = {
}
π‘˜π‘ β„ + 𝑔 sin πœƒ
π‘ Μˆ
1
π‘š
2
Problem 2: Each link in the double pendulum has mass m and length l. Determine the equations of
motion for the pendulum if an applied horizontal force F(t) acts at point C.
Solution: The moment of inertia of each thin rod is
𝐼=
π‘šπ‘™ 2
12
This is also a 2DOF problem, and we choose ΞΈ1 and ΞΈ2 as generalized coordinates. First, find a
vector to the point of application of the force
𝐫𝐢 = 𝑙 {
cos πœƒ1 + cos πœƒ2
}
sin πœƒ1 + sin πœƒ2
The virtual displacement at point C in terms of the generalized coordinates is
π›Ώπ‘ŸπΆ = 𝑙 {
βˆ’ sin πœƒ1
βˆ’ sin πœƒ2
} π›Ώπœƒ1 + 𝑙 {
} π›Ώπœƒ2
cos πœƒ1
cos πœƒ2
The force at point C is entirely horizontal, so that
𝐹
𝐅={ }
0
The virtual work performed by this force is then
π›Ώπ‘Š = βˆ’πΉπ‘™ sin πœƒ1 π›Ώπœƒ1 βˆ’ 𝐹𝑙 sin πœƒ2 π›Ώπœƒ2
Thus, the generalized forces are
𝑄1 = βˆ’πΉπ‘™ sin πœƒ1
𝑄2 = βˆ’πΉπ‘™ sin πœƒ2
3
Remember that the angles shown in the figure are negative, so the generalized forces will create positive
moments for each generalized coordinate. The locations of the centers of mass are
𝑙 cos πœƒ1
𝐫1 = {
}
2 sin πœƒ1
𝐫2 = 𝑙 {
𝑙 cos πœƒ2
cos πœƒ1
}+ {
}
sin πœƒ1
2 sin πœƒ2
The velocities of the centers of mass are
𝐫̇1 =
π‘™πœƒΜ‡1 βˆ’ sin πœƒ1
{
}
2 cos πœƒ1
𝐫̇2 = π‘™πœƒΜ‡1 {
π‘™πœƒΜ‡2 βˆ’ sin πœƒ2
βˆ’ sin πœƒ1
}+
{
}
cos πœƒ1
2 cos πœƒ2
The kinetic energy of the top pendulum is
1
1 2 π‘šπ‘™ 2 2 π‘šπ‘™ 2 2 π‘šπ‘™ 2 2
𝑇1 = π‘šπ«Μ‡1 β‹… 𝐫̇1 + πΌπœƒΜ‡1 =
πœƒΜ‡ +
πœƒΜ‡ =
πœƒΜ‡
2
2
8 1
24 1
6 1
The kinetic energy of the bottom pendulum is
𝑇2 =
1
1
π‘šπ«Μ‡2 β‹… 𝐫̇2 + πΌπœƒΜ‡22
2
2
1
𝑙2
π‘šπ‘™ 2 2
𝑇2 = π‘š (𝑙 2 πœƒΜ‡12 + 𝑙 2 πœƒΜ‡1 πœƒΜ‡2 (sin πœƒ1 sin πœƒ2 + cos πœƒ1 cos πœƒ2 ) + πœƒΜ‡22 ) +
πœƒΜ‡
2
4
24 2
𝑇2 =
π‘šπ‘™ 2 2 π‘šπ‘™ 2
π‘šπ‘™ 2 2
πœƒΜ‡1 +
πœƒΜ‡1 πœƒΜ‡2 cos(πœƒ2 βˆ’ πœƒ1 ) +
πœƒΜ‡
2
2
6 2
Thus, the total kinetic energy is
π‘šπ‘™ 2 4 2 1 2
𝑇=
( πœƒΜ‡ + πœƒΜ‡ + πœƒΜ‡1 πœƒΜ‡2 cos(πœƒ2 βˆ’ πœƒ1 ))
2 3 1 3 2
The potential energy is
𝑉=
π‘šπ‘”π‘™
π‘šπ‘”π‘™
sin πœƒ1 + π‘šπ‘”π‘™ sin πœƒ1 +
sin πœƒ2
2
2
𝑉=
3π‘šπ‘”π‘™
π‘šπ‘”π‘™
sin πœƒ1 +
sin πœƒ2
2
2
Now take the appropriate derivatives
πœ•π‘‡
π‘šπ‘™ 2 8
=
( πœƒΜ‡ + πœƒΜ‡2 cos(πœƒ2 βˆ’ πœƒ1 ))
2 3 1
πœ•πœƒΜ‡1
πœ•π‘‡
π‘šπ‘™ 2 2
=
( πœƒΜ‡ + πœƒΜ‡1 cos(πœƒ2 βˆ’ πœƒ1 ))
2 3 2
πœ•πœƒΜ‡2
4
𝑑 πœ•π‘‡
π‘šπ‘™ 2 8
( πœƒΜˆ + πœƒΜˆ2 cos(πœƒ2 βˆ’ πœƒ1 ) βˆ’ πœƒΜ‡2 (πœƒΜ‡2 βˆ’ πœƒΜ‡1 ) sin(πœƒ2 βˆ’ πœƒ1 ))
(
)=
𝑑𝑑 πœ•πœƒΜ‡1
2 3 1
𝑑 πœ•π‘‡
π‘šπ‘™ 2 2
( πœƒΜˆ + πœƒΜˆ1 cos(πœƒ2 βˆ’ πœƒ1 ) βˆ’ πœƒΜ‡1 (πœƒΜ‡2 βˆ’ πœƒΜ‡1 ) sin(πœƒ2 βˆ’ πœƒ1 ))
(
)=
𝑑𝑑 πœ•πœƒΜ‡2
2 3 2
πœ•π‘‡
π‘šπ‘™ 2
=
πœƒΜ‡ πœƒΜ‡ sin(πœƒ2 βˆ’ πœƒ1 )
πœ•πœƒ1
2 1 2
πœ•π‘‡
π‘šπ‘™ 2
=βˆ’
πœƒΜ‡ πœƒΜ‡ sin(πœƒ2 βˆ’ πœƒ1 )
πœ•πœƒ2
2 1 2
πœ•π‘‰
3π‘šπ‘”π‘™
=
cos πœƒ1
πœ•πœƒ1
2
πœ•π‘‰
π‘šπ‘”π‘™
=
cos πœƒ2
πœ•πœƒ2
2
Finally, the equations of motion are:
π‘šπ‘™ 2 8
3
[ πœƒΜˆ 1 + πœƒΜˆ 2 cos(πœƒ2 βˆ’ πœƒ1 ) βˆ’ πœƒΜ‡22 sin(πœƒ2 βˆ’ πœƒ1 )] + π‘šπ‘”π‘™ cos πœƒ1 = βˆ’πΉπ‘™ sin πœƒ1
2 3
2
π‘šπ‘™ 2 2 ̈
1
2
[ πœƒ2 + πœƒΜˆ 1 cos(πœƒ2 βˆ’ πœƒ1 ) + πœƒΜ‡ 1 sin(πœƒ2 βˆ’ πœƒ1 )] + π‘šπ‘”π‘™ cos πœƒ2 = βˆ’πΉπ‘™ sin πœƒ2
2 3
2
Or, in slightly simplified form
8 ̈
3𝑔
2𝐹
πœƒ + πœƒΜˆ 2 cos(πœƒ2 βˆ’ πœƒ1 ) βˆ’ πœƒΜ‡22 sin(πœƒ2 βˆ’ πœƒ1 ) +
cos πœƒ1 = βˆ’ sin πœƒ1
3 1
𝑙
π‘šπ‘™
2 ̈
𝑔
2𝐹
2
πœƒ2 + πœƒΜˆ 1 cos(πœƒ2 βˆ’ πœƒ1 ) + πœƒΜ‡ 1 sin(πœƒ2 βˆ’ πœƒ1 ) + cos πœƒ2 = βˆ’ sin πœƒ2
3
𝑙
π‘šπ‘™
5
Problem 3: The cylinder of radius r and mass m rolls without slipping in the cylindrical cavity in the
cart, which has radius R. The cart, which has mass M, is attached to the wall with a spring of
stiffness k. An applied force, F(t) acts on the cart in the horizontal direction. Neglecting friction,
what are the equations of motion for the system?
Solution: This is also a 2DOF problem, and we choose x and ΞΈ as generalized coordinates. The
cylinder has moment of inertia
π‘šπ‘Ÿ 2
𝐼=
2
Since the cylinder rolls without slipping, the velocity of its center point is the same as the tangential
velocity of the rolling cylinder. Let us define
𝜌 =π‘…βˆ’π‘Ÿ
Then the velocity of the center of the cylinder is
𝑣𝐢 = πœŒπœƒΜ‡
If we define the angular velocity of the cylinder to be πœ‘Μ‡ , then the tangential velocity of the cylinder
is
𝑣𝐢 = π‘Ÿπœ‘Μ‡
Thus,
πœ‘Μ‡ =
𝜌
πœƒΜ‡
π‘Ÿ
The displacement and velocity of the cart is
π‘₯
π«π‘Š = { }
0
π‘₯Μ‡
π«Μ‡π‘Š = { }
0
6
Assuming that the β€œneutral” position of the cylinder is at the bottom of the cart, when ΞΈ = 0, the
displacement and velocity of the cylinder is
π‘₯ βˆ’ 𝜌 sin πœƒ
𝐫𝐢 = {
}
𝜌(1 βˆ’ cos πœƒ)
π‘₯Μ‡ βˆ’ πœŒπœƒΜ‡ cos πœƒ
𝐫̇𝐢 = {
}
πœŒπœƒΜ‡ sin πœƒ
The kinetic energy of the cart is
1
π‘‡π‘Š = 𝑀π‘₯Μ‡ 2
2
and the kinetic energy of the cylinder is
𝑇𝐢 =
1
1
π‘šπ«Μ‡πΆ β‹… 𝐫̇𝐢 + πΌπœ‘Μ‡ 2
2
2
1
1 π‘šπ‘Ÿ 2 𝜌2 2
𝑇𝐢 = π‘š(π‘₯Μ‡ 2 βˆ’ 2𝜌π‘₯Μ‡ πœƒΜ‡ cos πœƒ + 𝜌2 πœƒΜ‡ 2 ) + (
) πœƒΜ‡
2
2 2 π‘Ÿ2
𝑇𝐢 =
1
3
π‘š(π‘₯Μ‡ 2 βˆ’ 2𝜌π‘₯Μ‡ πœƒΜ‡ cos πœƒ + 𝜌2 πœƒΜ‡ 2 )
2
2
The total kinetic energy is
𝑇=
1
3
(𝑀 + π‘š)π‘₯Μ‡ 2 βˆ’ π‘šπœŒπ‘₯Μ‡ πœƒΜ‡ cos πœƒ + π‘šπœŒ2 πœƒΜ‡ 2
2
4
The potential energy is
1
𝑉 = π‘˜π‘₯ 2 + π‘šπ‘”πœŒ(1 βˆ’ cos πœƒ)
2
Now take the appropriate derivatives
πœ•π‘‡
= (𝑀 + π‘š)π‘₯Μ‡ βˆ’ π‘šπœŒπœƒΜ‡ cos πœƒ
πœ•π‘₯Μ‡
πœ•π‘‡
3
= βˆ’π‘šπœŒπ‘₯Μ‡ cos πœƒ + π‘šπœŒ2 πœƒΜ‡
2
πœ•πœƒΜ‡
𝑑 πœ•π‘‡
( ) = (𝑀 + π‘š)π‘₯̈ βˆ’ π‘šπœŒπœƒΜˆ cos πœƒ + π‘šπœŒπœƒΜ‡ 2 sin πœƒ
𝑑𝑑 πœ•π‘₯Μ‡
𝑑 πœ•π‘‡
3
( ) = βˆ’π‘šπœŒπ‘₯̈ cos πœƒ + π‘šπœŒπœƒΜ‡ π‘₯Μ‡ sin πœƒ + π‘šπœŒ2 πœƒΜˆ
Μ‡
𝑑𝑑 πœ•πœƒ
2
7
πœ•π‘‡
=0
πœ•π‘₯
πœ•π‘‡
= π‘šπœŒπ‘₯Μ‡ πœƒΜ‡ sin πœƒ
πœ•πœƒ
πœ•π‘‰
= π‘˜π‘₯
πœ•π‘₯
πœ•π‘‰
= π‘šπ‘”πœŒ sin πœƒ
πœ•πœƒ
Collect all terms to form the equations of motion
2
(𝑀 + π‘š)π‘₯̈ βˆ’ π‘šπœŒπœƒΜˆ cos πœƒ + π‘šπœŒπœƒΜ‡ sin πœƒ + π‘˜π‘₯ = 𝐹
3
π‘šπœŒ2 πœƒΜˆ βˆ’ π‘šπœŒπ‘₯̈ cos πœƒ + π‘šπ‘”πœŒ sin πœƒ = 0
2
8
Related documents