Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 06 - Continuous Random Variables
CHAPTER 6—Continuous Random Variables
6.1
Intervals of values.
6.2
By finding areas under the curve.
6.3
f(x) 0 for all x; area under the curve equals 1.
6.4
Relative likelihood that x will be near the given point.
6.5
When a variable has a rectangular distribution over a certain interval.
6.6
MTB > cdf cl;
SUBC> uniform 2.0 8.0.
CONTINUOUS UNIFORM ON 2.0 TO 8.0
K P( X LESS OR = K)
0.0000
0.0000
0.5000
0.0000
1.000 0
0.0000
1.5000
0.0000
2.0000
0.0000
2.5000
0.0833
3.0000
0.1667
3.5000
0.2500
4.0000
0.3333
4.5000
0.4167
5.0000
0.5000
5.5000
0.5833
6.0000
0.6667
6.5000
0.7500
7.0000
0.8333
7.5000
0.9167
8.0000
1.0000
a.
f ( x)
1
1
for 2 x 8
8–2 6
= 0 otherwise
b.
Graph not included in this manual.
c.
P(3 x 5) = P(x 5) – P(x 3) = .5 – .1667 = .3333
d.
P(1.5 x 6.5) = P(x 6.5) – P(x 1.5) = .75 – 0 = .75
e.
cd 28
5
2
2
(d – c) 2 (8 – 2) 2
x2
3
12
12
x
x x2 3 1.732
6-1
Chapter 06 - Continuous Random Variables
f.
6.7
6.8
[ x 2 x ] [5 2(1.732 )] [1.536,8.464 ]
P(1.536 x 8.464) = P(x 8) = 1
f ( x)
a.
1
1
1
d c 175 50 125
f ( x)
1
1
for 0 x 6.
60 6
= 0 otherwise
b.
f(x)
1/6
0
6.9
6 min
c.
1
P(2 x 4) (4 – 2) .3333
6
d.
1
P(3 x 6) (6 – 3) .5
6
e.
1 1
P{0 x 2} or {5 x 6} 2 1 .5
6 6
a.
b.
cd 06
3
2
2
(d – c) 2 (6 – 0) 2
x2
3
12
12
x 3 1.732
x
[ x x ] [3 1.732 ] [1.268, 4.732 ]
1
P(1.268 x 4.732) (4.732 – 1.268) .5773
6
6.10
6.11
1
f ( x) d c
a.
1
2
1
50
1
2
2
5
for 120 x 140
6-2
Chapter 06 - Continuous Random Variables
f ( x)
b.
1
1
1
d c 140 120 20
f(x)
1/20
120
6.12
140 min
c.
P(125 x 135) = 10 (1/20) = .5
d.
P(x 135) = 5 (1/20) = .25
a.
b.
c d 120 140
130
2
2
d c 140 120
x
5.7735
12
12
x
x x 130 5.7735 124 .2265
x x 130 5.7735 135 .7735
P(124 .2265 x 135 .7735 ) (135 .7735 124 .2265 ) x
6.13
6.14
1
f ( x) d c
a.
b.
f ( x)
1
2
1
17 5
1
2
2 1
12 6
1
1
for 3 x 6.
6–3 3
f(x)
1/3
3
c.
6 inches
P(x 4) = 1 – P(x < 4) = 1 – .3333 = .6667
P(x 5) = 1 – P(x < 5) = 1 – .6667 = .3333
1
P( x 4.5) (4.5 – 3) .5
3
6-3
1
.57735
20
Chapter 06 - Continuous Random Variables
6.15
6.16
a.
x
b.
x
c d 36
4.5
2
2
d –c
6–3
.8660
12
12
[ x 2 x ] [4.5 2(.8660 )] [2.768, 6.232 ]
P(2.768 x 6.232) = P(3 x 6) = 1
[x x ] [4.5.8660] [3.634, 5.366]
1
P(3.634 x 5.366) (5.366 – 3.634) .5773
3
Entire family of normal distributions
Highest point on curve is mean, median and mode
Distribution is symmetrical
Tails go to infinity in both directions
Area right of = Area left of = 0.5
a.
center
b.
spread
6.17
6.18
68.26%, 95.44%, 99.73%
6.19
Subtract the mean and divide the result by the standard deviation; tells us the number of
standard deviations the value is above or below the mean.
6.20
a.
x equals the mean
b.
x greater than the mean
c.
x less than the mean
6.21
The normal table provides the areas under the standard normal curve (the distribution of the z
values).
6-4
Chapter 06 - Continuous Random Variables
6.22
a.
=3
=6
20
X
b.
20
30
c.
100
6.23
200
a.
z
25 – 30
–1 ; x is one standard deviation below the mean.
5
b.
z
15 – 30
–3 ; x is three standard deviations below the mean.
5
c.
z
30 – 30
0 ; x is equal to the mean.
5
6-5
Chapter 06 - Continuous Random Variables
6.24
d.
z
40 – 30
2 ; x is two standard deviations above the mean.
5
e.
z
50 – 30
4 ; x is four standard deviations above the mean.
5
a.
P(0 z 1.5) = 0.9332 – 0.5000 = .4332
b.
P(z 2) = 1 – .9772 = .0228
6-6
Chapter 06 - Continuous Random Variables
c. P(z 1.5) =.9332
d.
P(z –1) = 1 – .1587 =.8413
e.
P(z –3) = .00135
f.
P(–1 z 1) = .8413 – .1587 = .6826
6-7
Chapter 06 - Continuous Random Variables
6.25
6.26
g.
P(–2.5 z .5) = .6915 – .0062 = .6853
h.
P(1.5 z 2) = .9772 – .9332 = .0440
i.
P P(–2 z –.5) = .3085 – .0228 = .2857
a.
z.01 2.33
b.
z .05 1.645
c.
z.02 2.054 or 2.05 with rounding
d.
– z .01 –2.33
e.
– z .05 –1.645
f.
– z .10 –1.28
Restate each probability in terms of the standard normal random variable z.
x – x – 1000
z
100
Then use the table to solve.
6-8
Chapter 06 - Continuous Random Variables
a.
P(1000 x 1200) = P(0 z 2) = .9772 – .5 = .4772
b.
P(x > 1257) = P(z > 2.57) = 1 – .9949 = .005
c.
P(x < 1035) = P(z < .35) = .6368
d.
P(857 x 1183) = P(–1.43 z 1.83) = .9664 – .0764 = .8900
e.
P(x 700) = P(z – 3) = .00135
f.
P(812 x 913) = P(–1.88 z –.87) = .1922 – .0301 = .1621
g.
P(x > 891) = P(z > –1.09) = 1 – .1379 = .8621
h.
P(1050 x 1250) = P(.5 z 2.5) = .9938 – .6915 = .3023
First find the z-value from the table that makes the statement true. Then calculate x using
the formula:
x = z + = z(100) + 500
6.27
6.28
a.
P(x 696) = .025
b.
P(x 664.5) = .05
c.
P(x < 304) = .025
d.
P(x 283) = .015
e.
P(x < 717) = .985
f.
P(x > 335.5) = .95
g.
P(x 696) = .975
h.
P(x 700) = .0228
i.
P(x > 300) = .9772
a.
b.
z
x–
x – 100
16
6-9
Chapter 06 - Continuous Random Variables
6.29
c.
(1) P(x > 140) = P(z > 2.5) = 1 – .9938 = .0062
(2) P(x < 88) = P(z < –.75) = .2266
(3) P(72 < x < 128) = P(–1.75 < z < 1.75) = .9599 – .0401= .9198
(4) P(–1.5 z 1.5) = .9332 – .0668 = .8664
d.
P(x > 136) = P(z > 2.25) = 1 – .9878 = .0122; 1.22%
a.
(1) P(x 959) = P(z 2.12) = .9830
(2) P(x > 1004) = P(z > 2.72) = 1 – .9967 = .0033
(3) P(x < 650) + P(x > 950) = P(z < –2) + P(z > 2) = .0228 + (1 – .9772) = .0456
b.
P(x > 947) = P(z > 1.96) = .025
order 100
1.96
16
order = 947 boxes of cereal
6.30
6.31
6.32
Restate each probability in terms of z. Then use the table to solve.
a.
b.
c.
d.
e.
f.
g.
h.
P(7 x 9) = P(–2.0 ≤ z ≤ 2.0) = .9772 – .0228 = .9544
P(8.5 x 9.5) = P(1 ≤ z ≤ 3) = .9987 – .8413 = .1574
P(6.5 x 7.5) = P(–3 ≤ z ≤ –1) = .1587 – .00135 = .15735
P(x 8) = P(z 0) = 1 – .5 = .5
P(x 7) = P(z –2) = .0228
P(x 7) = P(z –2) = 1 – .0228 = .9772
P(x 10) = P(z 4) = 1.0 (approximately)
P(x > 10) = P(z > 4) = 0 (approximately)
a.
P(x 27) = P(z –3.00) = .5 – .00135 = .49865
b.
Claim is probably not true, because the probability is very low of randomly purchasing a
car with 27 mpg if the mean is actually 30 mpg.
Common stocks: = 12.4, = 20.6; let x = stock.
Tax free municipal bond: = 5.2, = 8.6; let y = bond.
a.
b.
c.
d.
e.
f.
P(x > 0) = P(z > –.60) = 1 – .2743 = .7257
P(y > 0) = P(z > –.60) = 1 – .2743 = .7257
P(x > 10) = P(z > –.12) = 1 – .4522 = .5478
P(y > 10) = P(z > .56) = 1 – .7123 = .2877
P(x –10) = P(z –1.09) = .1379
P(y –10) = P(z –1.77) = .0384
6-10
Chapter 06 - Continuous Random Variables
6.33
6.34
15.95 – 16.0024
16.05 – 16.0024
P( x 15.95) P( x 16.05) P z
P z
.02454
.02454
= P(z < –2.14) + P(z > 1.94) = .0162 + (1 – .9738) = .0424
P(x k) = .02
k–
z
k – 40,000
4000
k = 31,784
Approximately 31,784 miles
– 2.054
Note: if use rounded z value of –2.05, then k =31,800
6.35
a.
10%, 90%
k
z
1.28
k 12.4
20.6
k 13.968
b.
Q1 : 0.67
k 12.4
20.6
k 1.402
Q3 : 0.67
k 12.4
20.6
k 26.202
6.36
z
x–
, –1
63 –
, 1.5
93 –
Solve the two equations for the two unknowns: = 75, = 12
6.37
6.38
a.
[ ± 2.33]
b.
[50.575 ± 2.33(1.6438)] = [46.745, 54.405]
a.
+ 3 = 5.2 + 3(8.6) = 31%
b.
31 12.4
P( x 31) P z
Pz .90 1 .8159 .1841
20.6
6-11
Chapter 06 - Continuous Random Variables
6.39
2500 0
P( z .5) 1 .6915 .3085
5000
2500 0
Process B: P( x 2500) P z 10,000 P( z .25) 1 .5987 .4013
Process A: P( x 2500) P z
a.
Process B is investigated more often.
2500 7500
P( z 1) 1 .1587 .8413
5000
2500 7500
Process B: P( x 2500) P z 10,000 P( z .5) 1 .3085 .6915
Process A: P( x 2500) P z
b.
Process A is investigated more often.
c.
Process B will be investigated more often.
d.
P(x > k) = .3085 implies that z
k 0
.5 . Thus k = 5000.
10,000
Investigate if cost variance exceeds $5000.
5000 7500
P( x 5000) P z
P( z .25) 1 .4013 .5987
10,000
6.40
P(x k) = .33
k
z
k 3000
500
k = 2780
$2780
.44
6.41
656
.44
896
1.96
656 – = –.44
896 – = 1.96
– = –.44 – 656
– = 1.96 – 896
= .44 + 656
= –1.96 + 896
.44 + 656 = –1.96 + 896
2.4 = 896 – 656
2.4 = 240
= 100
= .44 + 646
= .44(100) + 656 = 44 + 656 = 700
6.42
Binomial tables are often unavailable for large values of n.
6.43
Both np and n(1 – p) exceed 5.
6-12
Chapter 06 - Continuous Random Variables
6.44
Create an interval that includes the integer (or integer interval) to be able to find the area
under the curve. This is necessary because a discrete distribution is being approximated by a
continuous distribution.
6.45
a.
np = (200)(.4) = 80
n(1 – p) = (200)(.6) = 120
both 5
6.46
b.
np (200 )(.4) 80, npq 48 6.9282
Rounding z to 2 decimal places
(1) P(x = 80) = P(79.5 x 80.5) = P(–.072 x .072) = .0576
.0558
(2) P(x 95) = P(x 95.5) = P(z 2.237) = .9874
.9875
(3) P(x < 65) = P(x 64.5) = P(z –2.237) = .0126
.0125
(4) P(x 100) = P(x 99.5) = P(z 2.8146) = .0024
.0025
(5) P(x > 100) = P(x 100.5) = P(z 2.959) = .0015
a.
Both np and n(1 – p) exceed 5.
b.
= 100, = 7.0711
See the methods outlined in the solution to Exercise 5.45.
P(x = 80) = .001
P(x 95) = .2623
P(x < 65) = .0000
P(x 100) = .5282
P(x > 100) = .4718
6.47
6.48
a.
(1) Both np and n(1 – p) exceed 5.
(2) np (1000 )(.2) 200, npq 160 12.6491
(3) P(x 150) = P(x 150.5) = P(z –3.913) = less than .001
b.
No. If the claim were true, the probability of observing this survey result is less than
.001.
a.
(205)(.65) 133.25, 46.6375 6.8292
117.5 133.25
P( x 117 ) P z
.0105 , rounding z to 2 decimal places gives .0104
6.8292
6.49
b.
No
a.
(250)(.05) 12.5, 11.875 3.446
39.5 12.5
P( x 40) P z
0 (approximately)
3.446
b.
No
6-13
Chapter 06 - Continuous Random Variables
6.50
(2000 )(.20) 400, 320 17.8885
P(x st) = .99
st
z
st 400
17.8885
st = 441.7
442 units
2.33
6.51
Explanations will vary.
6.52
f ( x) e x for x 0 ,
= 0 otherwise
6.53
Explanations will vary.
6.54
a.
f ( x) 2e 2 x for x 0.
b.
Graph not included in this manual.
c.
P( x 1) P(0 x 1) e 0 e 2 1 .1353 .8647
d.
P(.25 x 1) e 2(.25) e 2(1) .4712
e.
P( x 2) e 2( 2) .0183
f.
x
g.
x 2 x [.5 2(.5)] [.5,1.5]
1 1
1
1 1
.5, 2x 2 .25, x .5
2
2
P(.5 x 1.5) e 2(0) e 2(1.5) .9502
6.55
a.
f ( x) 3e 3 x for x 0.
b.
Graph not included in this manual.
c.
P(x 1) = .9502
d.
P(.25 x 1) = .4226
e.
P(x 2) = .0025
f.
x , x2 , x
1
3
1
9
1
3
6-14
Chapter 06 - Continuous Random Variables
6.56
g.
x 2 x 1 ,1, P 1 x 1 .9502
a.
f ( x)
b.
c.
6.57
7 7 x / 15
e
for x 0.
15
Graph not included in this manual.
P(a x b) e a e b e 7 a / 15 e 7b / 15
(1) P(1 x 2) = .2338
(2) P(x < 1) = .3729
(3) P(x > 3) = .2466
(4) P(.5 x 3.5) = .5966
1
2
15 2 1
225
1 15
, x
, x
7
49
7
d.
x
e.
x x 15 15 [0, 4.2857 ], P(0 x 4.2857 ) .8647
a.
b.
c.
6.58
3 3
7
7
x 2 x 15 2 15 [2.1429 , 6.4286 ], P(0 x 6.4286 ) .9502
7
7
2
f ( x) e 2 x / 3 for x 0.
3
Graph not included in this manual.
P(a x b) e a e b e 2a / 3 e 2b / 3
(1) P(x 3) = .8647
(2) P(1 x 2) = .2498
(3) P(x > 4) = .0695
(4) P(x < .5) = .2835
1
2
a.
x (500) 250,
b.
f ( x)
1
x
1
250
1 x / 250
e
for x 0.
250
c.
Graph not included in this manual.
d.
P( x 5) 1 e 5 / 250 .0198
e.
P(100 x 300) e 100/ 250 e 300/ 250 .3691
6-15
Chapter 06 - Continuous Random Variables
6.59
f.
Probably not; the probability of this result is quite small (.0198) if the claim is true.
a.
1
2
(1) P( x 2) e .1353
1
2
(2) P(1 x 2) e e .2325
.25
(3) P( x .25) 1 e .2212
b.
Probably not; the probability of this happening is .2212 (which is not terribly small).
6.60
See the steps on Pg 6-34?????? titled Normal Probability Plots
6.61
That the data approximately follows a normal distribution
a & b.
7.524
11.070
18.211
26.817
36.551
41.286
49.312
57.283
72.814
90.416
135.540
190.250
c.
i/(n+1)
0.0769
0.1538
0.2308
0.3077
0.3846
0.4615
0.5385
0.6154
0.6923
0.7692
0.8462
0.9231
z-value
-1.43
-1.02
-0.74
-0.50
-0.29
-0.10
0.10
0.29
0.50
0.74
1.02
1.43
Data is skewed because plot does not show up as a straight line.
Normal Prob. Plot
200.000
150.000
100.000
50.000
0.000
-1
.4
3
-1
.0
2
-0
.7
4
-0
.5
0
-0
.2
9
-0
.1
0
0.
10
0.
29
0.
50
0.
74
1.
02
1.
43
Income
(1000's)
Income
6.62
z-score
6-16
Chapter 06 - Continuous Random Variables
6.63
Plot below shows data does not follow a normal distribution since it is not a straight line.
Normal Curve Plot
12
10
Ratings
8
6
4
2
0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
Normal Score
6.64
Data is approximately normal because plot is close to a straight line.
Normal Curve Plot
33.5
33.0
32.5
MPG
32.0
31.5
31.0
30.5
30.0
29.5
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
Normal Score
15.95 16
) P( z 2.5) .0062; .62%
.02
6.65
P( x 15.95) P( z
6.66
a.
1 P(71 x 76) 1 P(
b.
P(x 74) = P(z .5) = 1 – .6915 = .3085
c.
P(x < 70.5) = P(z < –3) = .00135
71 73.5
76 73.5
z
) 1 P(2.5 z 2.5)
1
1
1 .9876 .0124
6-17
Chapter 06 - Continuous Random Variables
6.67
a.
P( x 80) P( z
b.
P( x k ) .05
k
z
80 100
) P( z 1.25) 1 .1056 .8944
16
k 100
16
Minimum score 73.68
1.645
6.68
a.
f ( x)
b.
1
1
1
.5 (.5) .5 .5
for .5 x .5
f(x)
1
–.5
.5 cents
c.
P({x > .3} or {x < –.3}) = .2 + .2 = .4
d.
P({x > .1} or {x < =.1}) = .4 + .4 = .8
e.
c d .5 .5
0
2
2
(d c) 2
(.5 (.5)) 2
x
.2887
12
12
f.
[ x x ] [0 .2887 ] [.2887 ,. 2887 ]
P(.2887 x .2887 ) (.2887 (.2887 ))(1) .5774
a.
P(x 3.5) = P(z –1.25) = 1-.1056 = .8944
b.
P(x 6) = P(z 0.83) = .7967
c.
P(3.5 x 6) = .7967 – .1056 = .6911
a.
10%, 90%, approximately 3.462
ux
6.69
6.70
P( x k ) .10
k
z
1.282
k 5
, k 3.4616
1.2
Note: if use z = –1.28, k = 3.464
6-18
Chapter 06 - Continuous Random Variables
b.
Follow the methods outlined in part a, or compute the inverse cdf in MINITAB.
Q1 = 4.196, Q3 = 5.804
6.71
P( x k ) .025
k
z
1.96
6.72
Set lowest passing score to 298
k 200
, k 298
50
P(x < 15) = .004
15
z
15
.02
= 15.053
Set to 15.053 inches.
2.65
6.73
6.74
300.5 292.5
P( x 300.5) P z
P( z 1.48) .9306
5.40833
1
x
4
1
1000 250
a.
P( x 400) e 400 / 250 .2019
b.
P(0 x 100) e 0 e 100 / 250 1 .6703 .3297
6-19
Chapter 06 - Continuous Random Variables
6.75
a, b. The probabilities below were computer calculated. Answers obtained using the normal
table may be slightly different.
Probability
of a return
Fixed annuities
Cash
equivalents
U.S. treasury
bonds
U.S. corporate
bonds
<0
.0000
.0000
.0708
.1190
> 5%
1.0000
.9996
.7374
.7077
> 10%
.0009
.0025
.4205
.4663
> 20%
.0000
.0000
.0305
.0890
> 50%
.0000
.0000
.0000
.0000
Non-U.S.
government bonds
Domestic large
cap stocks
International
equities
Domestic MidCap
stocks
<0
.1469
.2206
.2061
.2266
> 5%
.7151
.6695
.7004
.6826
> 10%
.5361
.5445
.5926
.5793
>20%
.1937
.2940
.3637
.3633
> 50%
.0001
.0062
.0180
.0228
Domestic
small cap stocks
c.
<0
.2483
> 5%
.6755
> 10%
.5894
> 20%
.4081
> 50%
.0540
The probability of a return greater than 50% is:
(1) essentially zero for fixed annuities, cash equivalents, U.S., treasury bonds, U.S.
investment grade corporate bonds, non-U.S. government bonds, and domestic large
cap issues.
(2) greater than 1% for international equities, domestic MidCap stocks, and domestic
small cap stocks.
(3) greater than 5% for domestic small cap stocks.
d.
The probability of a loss is:
(1) essentially zero for fixed annuities and cash equivalents.
6-20
Chapter 06 - Continuous Random Variables
(2)
(3) greater than 1% for all investment-classes except fixed annuities and cash
equivalents.
(4) greater than 10% for all investment classes except fixed annuities, cash equivalents,
and U.S. treasury bonds.
(5) greater than 20% for domestic large cap stocks, international equities, domestic
MidCap stocks, and domestic small cap stocks.
6.76
P(x 984,000) P(z
6.77
25 15 10 2
25 10 15 3
6.78
x = 60 sec, = 1
6.79
984,000 - 800,000
P(z 2.3) 1 .9893 .0107
80,000
a.
P( x 1.5 min) e 1.5 .2231
b.
P( x 2 min) e 2 .1353
= 4.15, = .5
a.
P( x 5.4) P( z
5.4 4.15
) P( z 2.5) 1 .9983 .0062
.5
b.
P( x 4.4) P( z
4.4 4.15
) P( z .5) .6915
.5
c.
P ( x k ) .05
k
z
k 4.15
.5
k 3.3275
1.645
6-21
Chapter 06 - Continuous Random Variables
6.80
= np = (400)(.50) = 200
npq (400 )(.5)(.5) 100 10
a.
P(x 180) P( z
b.
Yes
180.5 200
) P( z 1.95) 1 .9744 .0256
10
6.81
P(20 x 30) P(
20 26
30 26
z
) P(1.5 z 1.0) .8413 .0668 .7745
4
4
6-22