Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Wave Turbulence in nonintegrable and integrable optical (fiber) systems Pierre Suret et Stéphane Randoux Phlam, Université de Lille 1 Antonio Picozzi laboratoire Carnot, Université de Bourgogne, Dijon Séminaire CEMPI, Décembre 2012 Wave Turbulence in optical fibers Motivations Physics of multimode continuous wave (Raman fiber) lasers Nonlinear Dynamics / statistical Physics Nonlinear propagation of incoherent waves Experiments Theory Numerical simulations Wave Turbulence in optical fibers Introduction Lasers 1960s Nonlinear optics Optical fibers 1970s 2nd harmonic generation Telecommunications (linear operation) Nonlinear fiber optics intense cw/pulsed coherent light waves Photonic Crystal fibers 1995 supercontinuum Incoherent nonlinear (fiber) optics Wave Turbulence in optical fibers Outlines 1 Wave turbulence in optical fibers : some fundamentals 2 Anomalous thermalization (non integrable system) Non trivial degeneracy of resonance conditions 3 Irreversible evolution in Nonlinear Schrödinger equation (NLS 1D) No resonance conditions 4 Open questions Wave Turbulence in optical fibers 1) Principles WaveTurbulence Hydrodynamics, Mechanics, Plasmas physics, BEC, Optics Wave Turbulence Theory : incoherent wave weak nonlinearity (HNL << HL) (~ linear dispersion curve !) A(t, k) A* (t, k ') = n(t, k) d (k - k ') closure of moments kinetics equations ( Boltzmann equation) Dissipatives systems Kolmogorov-Zakharov cascade 2 ö æ ln ç A(k) ÷ è ø forcing k -a damping ln(k) Hamiltonian systems Wave Thermalization Entropy Microcanonics Energy equipartition Condensation of waves Wave Turbulence in optical fibers 1) Principles Example in mechanics vibrating plate Miquel B., N. Mordant Phys. Rev. Lett. 107(3), 034501 (2011) Cobelli P. et al. Phys. Rev. Lett. 103 204301 (2009) WaveTurbulence Wave Turbulence in optical fibers 1) Principles Vibrating plate WaveTurbulence Wave Turbulence in optical fibers 1) Principles Experiments with optical fibers Nonlinear fiber optics : how does it look like in real life? Wave Turbulence in optical fibers 1) Principles What do we observe in optics ? narrow optical spectrum E(r, t) = A(r,t) ei(w0t-k0z) E(w ) l e(r, t) = Re(E(r, t)) 2 w w0 T l 0 w Detector / intensity = low pass filter Dt ³10-10 s l » 1. /1.6mm t Iinst (t) µ [ e(t) ] A(w ) 2 Dw << w0 slow varying Amplitude carrier wave 2 I 0 (r, t) = E(r, t) = A(r, t) 2 2 T= l » 10-15 s c Wave Turbulence in optical fibers 1) Principles Optical (power) spectrum Optical spectrum : « measurement » of fast dynamics Optical power A(t) 2 ~1 ps Slow detector t Dispersive setup Optical spectrum = power spectral density = number of particles (kinetic equation) ˜A(z,w ) A˜ * (z,w ') = n(z,w ) d(w - w') A(w ) 2 w Wave Turbulence in optical fibers 1) Principles Interaction light / matter What is non linear ? Dielectric Polarization P = e0 éë c (1) E + c (2) E 2 + c (3) E 3 ùû Electromagnetic waves Maxwell equations (E & B) 1 ¶2 E(r, t) 1 ¶2 P(r, t) DE(r, t) - 2 = 2 2 c ¶t c e0 ¶t 2 Generalized NLS k æ ¶2 ¶ 2 ö ¶A k+1 b k ¶ A = -A + i ç 2 + 2 ÷ A + åi + NL k ¶z t-z/vg k! ¶t è ¶x ¶y ø k³1 losses diffraction dispersion Kerr Raman Gain … Wave Turbulence in optical fibers 1) Principles Single mode optical fiber l0 » 1. /1.6mm Optical cladding core LOW losses (0.1-1% /100m) n0 L » 10cm < - >100km n(r) single-mode fibers Fiber core diameter 6-9µm L E(x, y, z, t) = Y(x, y) A(z, t)ei(w0t-k0z) 1 or several Waves Wave Turbulence in optical fibers 1) Principles Propagation in single mode fiber (1D) Spatiotemporal system (scalar 1D Nonlinear Schrödinger equations) 1 2 i ¶z A(z, t) = - b2 ¶t2 A(z, t) + c (3) A(z, t) A(z, t) 2 group velocity dispersion Kerr effect z Distance z t |A|2 t Time t « time » «space» Wave Turbulence in Optical systems Optical spectrum of cw lasers 1) Principles Strongly multimode Continuous Wave laser = incoherent waves 101-106 modes ! complex dynamics A(t) = å A˜ (w k ) e iw k t e ij k A(t) 2 k j k j k' = 2p d(k - k') t random phases ˜A(w,z = 0) 2 2 ˜ A(w,z = L) w L ? w Wave Turbulence in optical fibers 1) Principles Wave Turbulence / kinetic Theory Weak nonlinear interaction among spectral components i ¶z A1 (z, t) = - b1 ¶t2 A1 (z,t) + ( A1 + k A2 ) A1 (z,t) 2 1 2 i ¶z A(z,t) = - b 2 ¶2t A(z,t) + c (3) A(z,t) A(z,t) 2 2 i ¶z A2 (z,t) = - b2 ¶2t A2 (z,t) + ( A2 + k A1 ) A2 (z,t) 2 2 (3) / Four Waves Mixing ˜A(w ) 2 Initial condition 101-108 modes ! incoherent waves / random phases w3 w1 w 2 Phase matching conditions ( w4 w1 w3 w2 w4 w1 + w 2 = w 3 + w4 w k(w1) + k(w2 ) = k(w3 ) + k(w4 ) Wave Turbulence in Optical systems Motivations, context Thermodynamics ex gas : collisions 1 2 3 4 E1 + E 2 = E 3 + E 4 p1 + p2 = p3 + p4 Kinetic Theory of gases Wave Turbulence Theory Nonlinear Optics Four Waves Mixing w1 + w2 = w3 + w4 k1 + k2 = k3 + k4 Wave Kinetic theory Wave Turbulence Propagation of incoherent waves in optical fiber 1 Wave turbulence in optical fibers : some fundamentals 2 Anomalous thermalization 3 Irreversible evolution in Non Linear Schrödinger equation (NLS 1D) Wave Turbulence in optics Anomalous Thermalization A simple example of wave thermalization i ¶z A1(z,t) = - b1 ¶ A (z,t) + ( A1 + k A2 ) A1(z,t) 2 2 i ¶z A2 (z,t) = - b2 ¶ A (z,t) + ( A2 + k A1 ) A2 (z,t) 2 2 t 1 2 t 2 2 b1 ¹ b 2 Cross 4 Waves mixing () w4 w1 w1 + w2 = w3 + w4 Phase-Matching b1 w + b2 w 2 = b 2 w 3 + b1w 4 2 2 k =2 A˜1(w ) Energy 2 1 XPM A˜ 2 (w ) 2 w3 w2 Wave Turbulence in optics A simple example of waves thermalization Anomalous Thermalization Kinetic equations H-Theorem * optical spectrum : A˜ j (z,w) A˜ j (z,w ') = n j (z,w) d(w - w ') ¶z n j (w,z) = Coll [ n j ,ni ] entropy ¶ zS ³ 0 S(z) = å ò log[ ni (w )] dw i Thermodynamical equilibrium Number of particules global invariants Momentum Kinetic Energy Nj = ò n (w) dw j é2 ù P = ò êåw n j (w )ú dw êë j=1 úû é2 ù E = ò êå b jw 2 n j (w )ú dw êë j=1 úû Wave Turbulence in optics Anomalous Thermalization b1 ¹ b 2 k j (w ) = b jw 2 A simple example of thermalization Distribution dewave Rayleigh-Jeans Energy equipartition Rayleigh-Jeans n RJ j »w -2 é2 ù E = ò êå b jw 2 n j (w )ú dw êë j=1 úû T n (w )= b jw 2 + lw - m j eq j Numerical simulations 1 l -m j , , T T T Lagrange parameters / E, P, Nj Wave Turbulence in optics Anomalous Thermalization Numerical simulations b1 ¹ b 2 k j (w ) = b jw 2 Rayleigh-Jeans n RJ j »w -2 b1 = b 2 k1 (w ) = k2 (w) = bw 2 NO energy equipartition Wave Turbulence in optics Phase-matching conditions Anomalous Thermalization A˜1(w ) 4 waves mixing () w1 + w2 = w3 + w4 w1 b1 w + b2 w 2 = b 2 w 3 + b1w 4 2 1 2 2 2 A˜ 2 (w ) w3 b1 = b 2 degeneracy w4 w2 w2 = w4 A˜1(w ) w1 = w 3 A˜ 2 (w ) Wave Turbulence in optics Anomalous Thermalization Anomalous thermodynamical equilibrium Distribution de Rayleigh-Jeans ¶z n j (w,z) = Coll [ n j ,ni ] é 1 1 1 1 ù ¶z n1(w,z) = òòò dw1-3 W n1 (w )n 2 (w1 )n 2 (w 2 )n1 (w 3 )ê + ú ë n1(w ) n 2 (w1 ) n2 (w 2 ) n1 (w 3 )û W= 1 p k 2 d(w + w1 - w 2 - w 3 ) d(k1(w ) + k2 (w1 ) - k2 (w 2 ) - k1(w 3 )) ò dw w3 = w + w1 - w2 k1 (w ) = w 2 k2 (w ) = w 2 3 ¶z n1(w,z) = 1 2 òò dw 1-2 k1(w) + k2 (w1) - k2 (w2 ) - k1(w3 ) = 2(w2 - w1)(w - w2 ) n1 (w )n 2 (w1 )n 2 (w 2 )n1 (w + w1 - w 2 ) é 1 ù éd (w 2 - w1 ) d (w - w 2 ) ù 1 1 1 + + ú ê úê n ( w ) n ( w ) n ( w ) n ( w + w w ) w w w 2 - w1 û ë 1 2 1 2 2 1 1 2 ûë 2 ò dw 2 ¶z n1(w,z) = 1 2 ò dw1 G[J,n1 ] w - w1 Wave Turbulence in optics Anomalous Thermalization New invariant Jw LOCAL invariant (for each w) H-theorem Anomalous thermodynamical equilibrium Distribution de Rayleigh-Jeans ¶Jw =0 ¶z Jw = n1(w,z) + n2 (w,z) ¶Sloc (z) >0 ¶z Sloc (z) = local equilibrium spectrum n1loc (w ) = Jw /2 - [ ò Log( n (w)[Jw - n (w)]) dw 1 1 ] 1+ ( lJw /2) 2 -1 / l : Lagrange parameter associated to N1 = ò n (w)dw 1 NO energy equipartition local equilibrium state preserves a memory of the initial condition Wave Turbulence in optics Anomalous Thermalization Anomalous thermodynamical equilibrium Distribution de Rayleigh-Jeans N1 = particular case ò n (w)dw = N = ò n (w)dw 1 2 n1(w ) n1(w ) n1loc (w ) = Jw /2 - 2 [ 1+ (lJ w ] /2) 2 -1 / l l=0 n2 (w ) w w n1loc (w ) = n2loc (w ) = Jw /2 = n1(w,z = 0) + n 2 (w,z = 0) 2 Wave Turbulence in optics Anomalous Thermalization Experiments Distribution de Rayleigh-Jeans Polarization maintaining fiber (PMF) WDM Raman QWP Q-Switch Nd/YAG Laser =1064 nm QWP trigger electronics Isotropic (spun) fiber 1.6 meters OSA AOM 10ns t HWP Wave Turbulence in optics Anomalous Thermalization Experiments Distribution de Rayleigh-Jeans Wave Turbulence in optics Anomalous Thermalization z=0 n1(w ) Experiments Distribution de Rayleigh-Jeans z=L n1(w ) z=0 z=L n2 (w ) n1(w ) n1(w ) Wave Turbulence in optics Anomalous Thermalization a general phenomenon another example : Conclusion Distribution de Rayleigh-Jeans Non-trivial degenerate resonances Local invariant ¶Jw =0 Jw = n1(w,z) + n2 (w,z) ¶z Breakdown of Energy equipartition Memory of the initial condition i ¶z A(z,t) = -ia ¶3t A(z, t) - ¶t2 A(z, t) + A(z, t) A(z,t) 2 Suret et al., PRL 104, 054101 (2010) C. Michel et al., Opt. Lett. 35, 2367-2369 (2010) C. Michel et al., Lett. In Math. Phys., 96, p 415 (2011) Wave Turbulence in optical fibers 1 Wave turbulence in optical fibers : some fundamentals 2 Anomalous thermalization (non integrable system) 3 Irreversible evolution in Nonlinear Schrödinger equation (NLS 1D) Wave Turbulence in optics 1D NLS Experiments / numerical simulations Irreversible evolution toward a steady state defocusing case : no BF B. Barviau, S. Randoux, and P. Suret , Optics Letters, 31, pp. 1696-1698 (2006) Wave Turbulence in optics 1D NLS 1D nonlinear Schrödinger equation (3) / 4 waves interaction 1 2 i ¶z A(z,t) = - b 2 ¶2t A(z,t) + c (3) A(z,t) ) A(z,t) 2 w3 w1 w 2 w4 2>0 normal dispersion (<1300nm) : no modulationnal instability w1 + w2 = w3 + w4 k(w1) + k(w2 ) = k(w3 ) + k(w4 ) 1 k( w ) = b 2w 2 2 NLS1D : integrable equation usual Wave Turbulence theory w1 = w 3 Trivial interaction ! infinity of motion constants quasi-periodic behavior ¶z n(w, z) = 0 w Wave Turbulence in optics 1D NLS 1D NLS What does the kinetic theory say ? Wave Turbulence in optics 1D NLS What does the kinetic theory say ? Oscillatory terms neglected in the usual treatment 1DNLS : NO Phase matched interactions Oscillatory terms ? Transient regime ? ¶z nw (z) = 0 Wave Turbulence in optics 1D NLS HNL/HL=0.05 Numerical simulations HNL/HL=0.5 Wave Turbulence in optics 1D NLS HNL/HL=0.05 Numerical simulations HNL/HL=0.5 Wave Turbulence in optics 1D NLS HNL/HL=0.05 Numerical simulations HNL/HL=0.5 Good approximation N(z) = N(z=0) !! Wave Turbulence in optics 1D NLS Dominant contributions A last approximation… Wave Turbulence in optics Dominant contribution 1D NLS - w1 3 + éæ w ö2 ù éæ w ö2 æ w ö2 ù 2 1 Dk = êç ÷ + w1 ú - êç 1 ÷ + ç 1 ÷ ú êëè 3 ø úû êëè 3 ø è 3 ø úû w1 3 w1 8 2 Dk = w1 9 HNL/HL=0.5 Wave Turbulence in optics 1D NLS Damped oscillations toward steady state comparison with numerical integration 1D NLS The period of oscillations is given by the dominant contribution Wave Turbulence in optics Experiments 1D NLS P »12mW =1064nm Experiments / numerical simulations (NLS) Simulations (NLS / Kinetic equations) 0.15nm nw = e 0 -w 4 Propagation of incoherent waves in optical fiber 1DNLS (single pass) Open Questions • Complete characterization of the equilibrium state (exponential tails) • General wave turbulence theory HNL << HL • Which theory at high optical power HNL ~ HL and HNL >> HL Propagation of incoherent waves in optical fiber 1DNLS (single pass) Open Questions - Gas of solitons ? - Numerical Inverse Scattering Transform (incoherent initial conditions) i yt = y xx + 2 y 2 y Periodic defocusing 1D NLS equation y R (x, t) = Re(y ) = 0.30 1 x j + åh j (x, t) å 2 j j 0.20 Hyperelliptic functions Eigenvalues of the IST problem 0.10 0.3 0.2 -0.00 0.1 -0.10 0 −0.1 -0.20 −0.2 −0.3 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 −40 −30 −20 −10 0 10 20 30 40 Propagation of incoherent waves in optical fiber Open Questions Non-local / non-instantaneous (experiments / NLS ?) i yt = y xx + y (x) ò R(x') y 2 (x - x') dx' Single pass : toward thermodynamical equilibrium ? Initial conditions ? 2D (multimode fibers) Dissipative systems Optical cavity (forcing / losses) Gain Propagation of incoherent waves in optical fiber Open Questions T T= slow time « time » t |A|2 Mean-field model t t =fast time (round trip) «space» Ginzburg-Landau eq. Braggs : -ln(R1(w)R2(w))=0+2w2 Dispersion / effet Kerr : 2 / Raman Gain : g losses : S Statistical properties of Raman fiber lasers Dissipative systems : open Questions Recent experimental results about extreme statistics (Raman fiber lasers) S. Randoux and P. Suret, Opt. Lett. 37, 500-502 (2012) Off-centered filter Model /Numerical integration : ok Which theory (mechanisms, PDF) ? Statistical properties of Raman fiber lasers Open Questions Optical power spectra transmitted by the narrow-bandwidth (5GHz-2pm) optical filter Statistical properties of Raman fiber lasers Dynamics at the output of the narrow-bandwidth optical filter Optical filter at central Stokes wavelength Off-centered optical filter (detuned from 1.5 nm from the central Stokes wavelength) Total (not filtered) Stokes power Statistical properties of Raman fiber lasers Statistics at the output of the narrow-bandwidth optical filter Centered filter Off-centered filter