Download Particles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Interaction of Radiation with Matter
« Element of modern x-ray physics »
J. Als-Nielsen et D. McMorrow
« Processus d’interaction entre
photons et atomes »
C. Cohen-Tannoudji,…
• Particles: probes
• Two process of interaction
Absorption
and
scattering
dz
dW
I0
kd
I
ki
l
2q
Characteristics of particles
Three types of particles
Are used in condensed matter physics
•
• Tender and hard X-ray photons: 3-100 keV
• Low or high energy electrons: 150 eV-100 keV
• Hot, thermal or cold neutrons: 120-25-10 meV
• Interference effects:
Wave length of particle must be
smaller
than interatomic distances
2𝑑 sin 𝜃 = 𝑚𝜆
𝜆 ≤ 2𝑑
Characteristics of particles
Description
X Photons
Neutrons
Electrons
Electromagnetic field
Particle
Particle
𝑬 = 𝑬0 𝑒 𝑖(𝒌∙𝒓−𝜔𝑡)
Energy
Momentum
kBT/E
E=hn=hc/l
l(Å)=12398/E(eV)
l=1 Å, E=12.4 keV
n=3.1018 Hz (EHz)
E
p
p=hk=hn/c
300K
3.10-6 << 1
y ~ exp(i k.r)
y ~ exp(i k.r)
E2=p2c2+mn2c4; E=p2/2mn
E=p2/2me
l(Å)=0.286/E0.5(eV)
l(Å)=12.265/E0.5(eV)
l=1 Å, E=81.8 meV
l=1 Å, E=150 eV
vn = 4000 m/s
ve = 7274 km/s
p=hk (=mv)
~
1
p=hk (=mv
~
10-5
Interaction
Charge
sth ~ Z2 barn
Moments magnétiques
sd ~ 10-6 barn
Noyaux (forte)
sd ~ 5 barn
Moments magnétiques
sd ~ 3 barn
Potentiel electrostatique
sd ~ 108 barn
Absorption
4700 barn (Z=28, 1,5 Å)
Typique : 0,1-1 barn
-
Absorption cross section
• After going through matter of width dz,
beam intensity decreases by dI
dz
𝑑𝐼 = −𝐼 𝑧 𝜇𝑑𝑧 ⟹ 𝐼 = 𝐼0 𝑒 −𝜇𝑙
I0
• m attenuation coefficient (cm-1)
• Beer-Lambert law
l
• F0: flux incident particles (s-1/cm2), F = I/S
Number of absorbed particles 𝑑𝑁𝑞 per time unit
𝑑𝑁𝑞 = 𝜙 𝑧 𝑁(𝑑𝑧)𝜎𝑎
•
sa:
absorption cross section, expressed in barn = 10-24 cm2
The cross section depends on the element,
its environnement (RX) and on the particle energy
Ex: 2D lattice
Unit cell 0.3 nm
Surface per atom is
s~10-15 cm2
I
𝑁 𝑑𝑧 = 𝜌𝑎 𝑆𝑑𝑧
𝜇 = 𝜎𝑎 𝜌𝑎
Scattering cross section
• Scattering process
dW
• number of scattered particles
𝒒
𝑑𝜎
𝑑𝑁𝑑 = 𝜙𝑑Ω
𝑑Ω
ki
Scattering differential cross section
• Wave function of the scattered particle
𝑒 𝑖𝑘𝑑 𝑟
𝜓𝑑 𝒓 = −𝑏(𝒒)
𝑟
𝑏(𝒒): scattering length
Neutrons: b independent on
• Differential cross section
𝑑𝜎
𝑑Ω
𝑠
𝑘𝑑
=
𝑏
𝑘𝑖
2
𝑑𝜎
𝑑Ω
= 𝑏
𝑠
2
q
kd
2q
Characteristics of particles
Description
X Photons
Neutrons
Electrons
Electromagnetic field
Particle
Particle
𝑬 = 𝑬0 𝑒 𝑖(𝒌∙𝒓−𝜔𝑡)
Energy
Momentum
kBT/E
E=hn=hc/l
l(Å)=12398/E(eV)
l=1 Å, E=12.4 keV
n=3.1018 Hz (EHz)
E
p
p=hk=hn/c
300K
3.10-6 << 1
y ~ exp(i k.r)
y ~ exp(i k.r)
E2=p2c2+mn2c4; E=p2/2mn
E=p2/2me
l(Å)=0.286/E0.5(eV)
l(Å)=12.265/E0.5(eV)
l=1 Å, E=81.8 meV
l=1 Å, E=150 eV
vn = 4000 m/s
ve = 7274 km/s
p=hk (=mv)
~
1
p=hk (=mv
~
10-5
Interaction
Charge
sth ~ Z2 barn
Magnetic moments
sd ~ 10-6 barn
Noyaux (forte)
sd ~ 5 barn
Magnetic moments
sd ~ 3 barn
Electrostatic potential
sd ~ 108 barn
Absorption
4700 barn (Z=28, 1,5 Å)
Typique : 0,1-1 barn
-
Scattering length for particles
Solve the Schrödinger equation of the particle
in an interaction potential 𝑉 𝒓
ℏ2 𝑘 2
Stationary states of energy: 𝐸 =
2𝑀
« Mécanique quantique 2, chap.VIII »
Cohen-Tannoudji, Diu, Laloë
with 𝑉 𝑟 =
ℏ2
𝑈(𝒓)
2𝑀
Born aprox. + 𝑘𝑟 ≫ 1
Scattering length =
FT of potential
ℏ2
ℏ2 𝑘 2
∆+𝑉 𝒓 𝜑 𝒓 =
𝜑 𝒓
2𝑀
2𝑀
∆ + 𝑘 2 − 𝑈(𝒓) 𝜑 𝒓 = 0
𝑖𝑘𝑟
𝑒
𝜑 𝒓 ~𝑒 𝑖𝒌𝑖 ∙𝒓 + 𝑏(𝒒)
𝑟
𝑏 𝒒 =−
𝟏
𝟒𝝅
𝑈(𝒓)𝑒 −𝑖𝒒∙𝒓 𝑑3 𝒓
Scattering length
X-rays: FT of the electron density
𝑏 𝒒 = −𝑟0 𝑓 𝒒 = −𝑟0
𝜌 𝒓 𝑒 −𝑖𝒒∙𝒓 𝑑 3 𝒓
Rayons X
Phase shift 𝜋 … r0 = 2,82 10-15 Å
Neutrons: FT of Fermi pseudo-potential. It is a constant because
(𝓥 𝒓 ~ δ 𝒓 )
𝑀
𝑏 𝒒 =𝑏=
𝓥 𝒓 𝑒 −𝑖𝒒∙𝒓 𝑑3 𝒓
2
2𝜋ℏ
Phase shift 0 ou 𝜋 …
Electrons: TF of potential 𝑉(𝒓)
𝑀
−𝑖𝒒∙𝒓 𝑑 3 𝒓
𝑏 𝒒 =−
𝑉(𝒓)𝑒
2𝜋ℏ2
Electron
𝑏 𝒒 depends n l’énergie
Phase shift 𝛿(q)
Fadley, Physica Scripta, T17,39,1987
Optical theorem
Mécanique quantique II, p. 940
C. Cohen-Tannoudji, B. Diu, Frank Laloë
𝜎𝑡𝑜𝑡 = 𝜎𝑎 +𝜎𝑑 = −
4𝜋
Im(𝑏
𝑘
0 )
𝑒 𝑖𝑘𝑑 𝑟
𝜓𝑑 𝒓 = −𝑏(𝜃)
𝑟
Shadow:
𝜓𝑖 𝒓 = 𝐴𝑒 𝑖𝑘𝑖 𝑟
Interference
between incident wave
and
scattered wave
Absorption
Origin of neutrons
absorption
• Neutrons weaklly absorbed
• Absorbed through nuclear reactions
3He+n  3H-+p
sa
Ni
Pb
Gd
520 2100 74000 4.6 0.17
6Li
10B
Detectors and shields
Energy dependance:
𝑘0
𝜎𝑎 𝑘 = 𝜎𝑎
𝑘
𝑘0 = 34,947 nm−1
Origin of photons
absorption
Free electron energy
𝐸 2 = 𝑚2 𝑐 4 + 𝑝2 𝑐 2
𝑣 ≪ 𝑐 𝐸 = 𝑝2 /2𝑚
Photon energy
(p,E)
𝐸𝑝ℎ = 𝑝𝑐
E
E
?
EO=511 keV
EO=511 keV
EO-EL
Dp.Dr  
p
Free electron:
no absorption
p
Bound electron
absorption
X-ray absorption
Hard X-rays
UV
VUV
XUV
Soft X-rays
• Absorption
At energies smaller than 1000 keV
Gamma
LEAD Z=82
Photoelectric effect
X-ray absorption
For E < 1000 keV
photoelectric effect is dominant
• Photoelectric effect
• Photon is absorbed if hn > EI (EI binding energy of e-)
• Excitation: Photoelectron is emitted ( E=hn - EI -F )
F: work function ~1 eV
• De-excitation: fluorescence photon (hn = EI -EII )
Auger electron ( E= EI -EII -EIII)
Fluorescence photon
Photoelectron
Continuum
Fermi level
Auger electron
-EF
M
(2p3/2)4
L (2p1/2)2
(2s)2
hn
Ka
Core levels
-EII
Kb
K (1s)2
-EI
Excitation
De-excitation
Absorption of photons
Emission of photons and electrons
Order of magnitude
X-rays: l = 1.542 Å
sa
Ni
Pb
Li B
Gd
5,7 36 78300 4760 79800
Neutrons: 1.8 Å
sa
Ni
Pb
Gd
520 2100 74000 4.6 0.17
6Li
10B
Electrons
mean free paths
Distance between
two inelastic collisions with
• Plasmons
• Valence electrons
From A. Zangwill, ‘Physics at Surfaces’, Cambridge Univ. Press.
After this distance (attenuation length), electrons loose their coherence.
Low energy electron diffraction (LEED) is a surface technique
Only surface photoelectrons and Auger electrons escape from the sample
Importance in X-Ray Absorption (XAS)…
Scattering
Scattering: atome-particle system changes of state
Initial state,
ei
Final state,
ef
Elastic scattering:
Does not change the nature or the internal state
of the particles and the target
Photon scattering
• Rayleigh scattering:
• Low energy elastic scattering
• hn << EI , EI -EII ; Fi = Ff ; light scattering, blue sky
• Raman/Brillouin scattering:
• Low energy inelastic scattering
• hn << EI ; Fi  Ff ; scattering on optical/acoustical phonons
• Thomson scattering:
• High energy elastic scattering
• hn >> EI ; Fi = Ff ; X-ray scattering
• Compton scattering:
• High energy inelastic scattering
• hn >> EI ; Fi  Ff ; X-ray scattering
Photons scattering
(pi ,Ei )
(pf ,Ef )
E
𝑝2
𝐸𝑒 =
𝑚
EO
E
EO
EO-EL
p
Free electron (e- mass m)
Compton scattering
𝑝2
𝐸𝑒 =
𝑀
p
Bound electron (atom, crystal mass M»m)
Thomson scattering
Compton scattering
Refraction
𝑅
𝑟
𝑆
A consequence of scattering
𝐷
Wave travelling through a plate of width Δ
Phase shift: 𝑛𝑘Δ-𝑘Δ
𝑅0
Δ
𝑅2 = 𝑅0 2 + 𝑟 2
𝑅𝑑𝑅 = 𝑟𝑑𝑟
𝑖 𝑛−1 𝑘Δ
𝜓
𝑃
=
𝜓
𝑃
𝑒
0
𝑃
= 𝜓0 𝑃 (1 + 𝑖 𝑛 − 1 𝑘Δ)
∞
𝑖𝑘𝑅
𝑒
𝜓 𝑃 = 𝜓0 𝑃 +𝜓0 (𝑆)𝑒 𝑖𝑘𝐷
−𝑏
(2𝜋𝑟𝑑𝑟Δ)𝜌𝑑
𝑅
0
∞
2𝜋𝑏Δ𝜌𝑑
𝑖𝑘𝐷
𝑖𝑘𝑅
= 𝜓0 𝑃 −𝜓0 𝑆 2𝜋𝑏Δ𝜌𝑑 𝑒
𝑒 𝑑𝑅 = 𝜓0 𝑃 (1 − 𝑖
)
𝑘
𝑅0
2𝜋𝑏𝜌𝑑
𝑛 =1−
𝑘2
Absorption
𝑅Δ
−1
𝜌𝑑 ~1𝑒Å−3 , 𝑏~ 𝑍 3. ∞
10−5
k~4
Å
−𝜇Å,
𝑒 𝑅0 𝑒 𝑖𝑘𝑅 𝑑𝑅
−5
𝛿 ~ 10
𝑅0
Refraction
a
n
ki
Refraction index
kr
kt
𝑛 = 𝑛𝑟 + 𝑖𝛽
a’
Phase shift and absorption
𝑒 𝑖𝑛𝑘𝑧 = 𝑒 𝑖𝑛𝑟𝑘𝑧 𝑒 −𝛽𝑘𝑧
For X-rays and neutrons
2𝜋𝑏𝜌𝑑
𝜇
𝑛 =1−
+ 𝑖𝛽 = 1 − 𝛿 + 𝑖
2
𝑘
2𝑘
Snell’s law
𝑛𝑟 cos 𝛼′ = cos 𝛼
Existence of a critical angle
above which total reflection
𝛼𝑐 = 2𝛿
ac
ki
kr
Stationnary wave
Measure of the sign of b (holography)
Experimental
techniques
EMISSION :
X-ray
EMISSION
(par rayons X) :
•Fluorescence
(Chemical analysis)
R
• ayons X
Electron Spectroscopy
Fluorescence
•
(Analyse chimique)
Electrons
•
Photoelectrons,
Auger
electrons
(analysis)
Photo-électrons,
•
électrons
Auger
(Spectrométrie, analyse)
Photoelectron
diffraction (structure
(local structure)
Diffraction
•
de photo-électrons
locale)
Photo-émission
•
(Structure
de
bande,
surface
Fermi)
de
Photoemission (band structure)
WAVES/PARTICLES
X-Rays
Neutrons
Electrons
Crystal
Liquid, liquid crystal
Polymer
Surface
REFRACTION :
X-ray, neutrons
Reflectrometry (surfaces, interfaces)
Stationnary waves (surfaces)
ABSORPTION :
X-ray
XAS, EXAFS, XANES (local order)
Dichroism (Magnetism, surfaces)
SCATTERING
X-rays
DIFFUSION
:Diffuse scattering (Disorder, liquids, soft matter)
•
Diffraction (Structures);
R
• ayons X
Compton scattering (electronic
structure)
Diffraction
•
(Etude
des structures)
Diffusion
•
diffuse
(Etude
du désordre
dans nano-particles,
les cristaux, liquides,proteins)
cristaux liquides)
Small angle scattering (Polymer, liquid
crystal,
D
• iffusion
Compton
(Structure électronique)
Magnetic, inelastic,
surface,
coherent
diffraction
Diffusion
• aux petits
angles (Polymères,
cristaux(synchrotrons)
liquides, agrégats, grandes mailles)
Diffusion
•
magnétique,
inélastique,
cohérente…
(synchrotrons)
Neutrons
Neutrons
•
Diffraction, Diffuse
scattering
(Structures,
Hydrogen,
Diffraction,
•
Diffusion
diffuse (Structures,
Hydrogène,contrast)
contraste différent)
Inélastique
•
(Excitations
élémentaires,
phonons, dynamique)
Inelastic scattering
(phonons,
dynamics,
excitations)
Magnétique
•
(Structures magnétique, magnons)
Magnetic (magnetism,
magnons)
Electrons
•
Diffraction,
•
LEED, RHEED (Etude des surfaces)
Electrons
Low- or high-energy electron diffraction (surfaces, thin samples)
Related documents