Download Data Mining: References

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Data Mining: References
Prof. Dr. Karsten Borgwardt, Department Biosystems, ETH Zürich
Basel, Fall Semester 2015
D-BSSE
References I
Achlioptas, P., Schölkopf, B., and Borgwardt, K. (2011).
Two-locus association mapping in subquadratic time.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 726–734.
Azencott, C., Grimm, D., Sugiyama, M., Kawahara, Y., and Borgwardt, K. M.
(2013).
Efficient network-guided multi-locus association mapping with graph cuts.
Bioinformatics, 29(13):171–179.
Becker, C., Hagmann, J., Müller, J., Koenig, D., Stegle, O., Borgwardt, K., and
Weigel, D. (2011).
Spontaneous epigenetic variation in the arabidopsis thaliana methylome.
Nature, 480(7376):245–249.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
2 / 17
References II
Bishop, C. M. (2006).
Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Borgwardt, K. M. (2013).
Machine Learning in Computational Biology.
Machine Learning Summer School 2013, Tübingen, Germany.
Borgwardt, K. M. and Kriegel, H. (2005).
Shortest-path kernels on graphs.
In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM
2005), 27-30 November 2005, Houston, Texas, USA, pages 74–81.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
3 / 17
References III
Breiman, L. (2001).
Random forests.
Machine Learning, 45(1):5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).
Classification and Regression Trees.
Wadsworth.
Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig,
D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco,
C., Borgwardt, K., Schmid, K. J., and Weigel, D. (2011).
Whole-genome sequencing of multiple arabidopsis thaliana populations.
Nature Genetics, 43(10):956–963.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
4 / 17
References IV
Cortes, C. and Vapnik, V. (1995).
Support-vector networks.
Machine Learning, 20(3):273–297.
Cox, D. R. (1958).
The regression analysis of binary sequences (with discussion).
J Roy Stat Soc B, 20:215–242.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the em algorithm.
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.
Donath, W. E. and Hoffman, A. J. (1973).
Lower bounds for the partitioning of graphs.
IBM J. Res. Dev., 17(5):420–425.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
5 / 17
References V
Ester, M., Kriegel, H., Sander, J., and Xu, X. (1997).
Density-connected sets and their application for trend detection in spatial databases.
In Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD-97), Newport Beach, California, USA, August 14-17, 1997, pages
10–15.
Florek, K., . J. P. J. S. H. Z. S. (1951).
Sur la liaison et la division des points d’un ensemble fini.
Colloquium Mathematicae, 2(3-4):282–285.
Floyd, R. (1962).
Algorithm 97, shortest path.
Comm. ACM, 5:345.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
6 / 17
References VI
Gärtner, T. (2003).
A survey of kernels for structured data.
SIGKDD Explorations, 5(1):49–58.
Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005).
Measuring statistical dependence with hilbert-schmidt norms.
In Proceedings of the 16th International Conference on Algorithmic Learning Theory,
ALT’05, pages 63–77, Berlin, Heidelberg. Springer-Verlag.
Guyon, I. and Elisseeff, A. (2003).
An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
7 / 17
References VII
Hagmann, J., Becker, C., Müller, J., Stegle, O., Meyer, R. C., Wang, G.,
Schneeberger, K., Fitz, J., Altmann, T., Bergelson, J., Borgwardt, K., and Weigel, D.
(2015).
Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage.
PLoS Genetics, 11(1):e1004920.
Han, J. and Kamber, M. (2006).
Data Mining: Concepts and Techniques.
The Morgan Kaufmann series in data management systems. Elsevier San Francisco
(Calif.), Amsterdam, Boston, Heidelberg.
Haussler, D. (1999).
Convolution kernels on discrete structures.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
8 / 17
References VIII
Kam-Thong, T., Azencott, C.-A., Cayton, L., Pütz, B., Altmann, A., Karbalai, N.,
Sämann, P. G., Schölkopf, B., Müller-Myhsok, B., and Borgwardt, K. M. (2012).
GLIDE: GPU-based linear regression for detection of epistasis.
Human Heredity, 73(4):220–236.
Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis, C. M.,
Erhardt-Lehmann, A., Hemmer, B., Rieckmann, P., Daake, M., Weber, F., Wolf, C.,
Ziegler, A., Putz, B., Holsboer, F., Scholkopf, B., and Muller-Myhsok, B. (2010).
EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical
processing units.
Eur J Hum Genet.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
9 / 17
References IX
Kam-Thong, T., Pütz, B., Karbalai, N., Müller-Myhsok, B., and Borgwardt, K.
(2011).
Epistasis detection on quantitative phenotypes by exhaustive enumeration using
GPUs.
Bioinformatics (ISMB), 27(13):i214–i221.
Karaletsos, T., Stegle, O., Dreyer, C., Winn, J., and Borgwardt, K. M. (2012).
ShapePheno: unsupervised extraction of shape phenotypes from biological image
collections.
Bioinformatics, 28(7):1001–1008.
Leslie, C. S., Eskin, E., and Noble, W. S. (2002).
The spectrum kernel: A string kernel for SVM protein classification.
In Proceedings of the 7th Pacific Symposium on Biocomputing, PSB 2002, Lihue,
Hawaii, USA, January 3-7, 2002, pages 566–575.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
10 / 17
References X
Lloyd, S. P. (1982).
Least squares quantization in PCM.
IEEE Transactions on Information Theory, 28(2):129–136.
Murphy, K. P. (2012).
Machine learning : a probabilistic perspective.
Adaptive computation and machine learning series. MIT Press, Cambridge (Mass.).
Nemhauser, G., Wolsey, L., and Fisher, M. (1978).
An analysis of approximations for maximizing submodular set functionsi.
Mathematical Programming, 14(1):265–294.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
11 / 17
References XI
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001).
On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 14 [Neural Information
Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001,
Vancouver, British Columbia, Canada], pages 849–856.
Quinlan, J. R. (1986).
Induction of decision trees.
Mach. Learn., 1(1):81–106.
Quinlan, J. R. (1993).
C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
12 / 17
References XII
Rousseeuw, P. (1987).
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
J. Comput. Appl. Math., 20(1):53–65.
Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000).
New support vector algorithms.
Neural Comput., 12(5):1207–1245.
Shervashidze, N. and Borgwardt, K. M. (2009).
Fast subtree kernels on graphs.
In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., and Culotta, A.,
editors, Advances in Neural Information Processing Systems 22, Proceedings of the
Twenty-Third Annual Conference on Neural Information Processing Systems, pages
1660–1668.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
13 / 17
References XIII
Shervashidze, N., Schweitzer, P., van Leeuwen, E., Mehlhorn, K., and Borgwardt,
K. M. (2011).
Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12:2539–2561.
Shi, J. and Malik, J. (2000).
Normalized cuts and image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905.
Sugiyama, M. and Borgwardt, K. M. (2013).
Rapid distance-based outlier detection via sampling.
In Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013., pages 467–475.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
14 / 17
References XIV
Sugiyama, M., Lopez, F. L., Kasenburg, N., and Borgwardt, K. M. (2015).
Significant subgraph mining with multiple testing correction.
In Proceedings of the 2015 SIAM International Conference on Data Mining.
in press.
Vapnik, V. N. and Chervonenkis, A. Y. (1974).
Theory of pattern recognition: Statistical problems of learning [Russian].
Moscow: Nauka.
Veropoulos, K., Campbell, C., and Cristianini, N. (1999).
Controlling the sensitivity of support vector machines.
In Proceedings of the International Joint Conference on AI, pages 55–60.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
15 / 17
References XV
Vishwanathan, S. V. N. and Smola, A. J. (2002).
Fast kernels for string and tree matching.
In Advances in Neural Information Processing Systems 15 [Neural Information
Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British Columbia,
Canada], pages 569–576.
Weston, J., Elisseeff, A., Schölkopf, B., and Tipping, M. (2003).
Use of the zero norm with linear models and kernel methods.
J. Mach. Learn. Res., 3:1439–1461.
Wiener, H. (1947).
Structural determination of paraffin boiling points.
Journal of the American Chemical Society, 69(1):17–20.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
16 / 17
References XVI
Zaki, M. J. and Jr, W. M. (2014).
Data Mining and Analysis: Fundamental Concepts and Algorithms.
Cambridge University Press, New York, NY, USA.
D-BSSE
Karsten Borgwardt
Data Mining Course, Basel
Fall Semester 2015
17 / 17
Related documents