Download Trigonometric Formulas

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Formulas
Definitions of trigonometric functions on the unit circle ( x 2  y 2  1 ):
cos t  x
sin t  y
csc t 
1
, y0
y
sec t 
1
, x0
x
y
, x0
x
x
cot t  , y  0
y
tan t 
Definitions of trigonometric functions on the right triangle:
opposite
hypotenuse
hypotenuse
csc  
opposite
sin  
adjacent
hypotenuse
hypotenuse
sec  
adjacent
cos  
opposite
adjacent
adjacent
cot  
opposite
tan  
Reciprocal relations:
1
sin t
sin t
tan t 
cos t
csc t 
sec t 
1
cos t
1
tan t
cos t
cot t 
sin t
cot t 
Even-Odd properties:
sin  t    sin t [odd]
csc t    csc t [odd]
cos t   cos t [even]
sec t   sec t [even]
tan  t    tan t [odd]
cot t    cot t [odd]
Pythagorean identities:
sin 2 t  cos 2 t  1
tan 2 t  1  sec 2 t
1  cot 2 t  csc 2 t
Note:
sin 2 t  cos 2 t  1 
sin 2 t  cos 2 t
1

 tan 2 t  1  sec2 t
2
cos t
cos 2 t
and
sin 2 t  cos 2 t
1
sin t  cos t  1 

 1  cot 2 t  csc2 t
2
2
sin t
sin t
2
2
Trigonometric Identities
Addition and Subtraction formulas:
sin s  t   sin s cost   coss sin t 
coss  t   coss cost   sin s sin t 
tan s   tan t  sin s  t 
tan s  t  

1  tan s  tan t  coss  t 
sin s  t   sin s cost   coss sin t 
coss  t   coss cost   sin s sin t 
tan s   tan t  sin s  t 
tan s  t  

1  tan s  tan t  coss  t 
Double Angle formulas:
sin 2x  2 sin xcosx
cos2 x   cos 2 x   sin 2 x   1  2 sin 2 x   2 cos 2 x   1
2 tan x 
sin 2 x 
tan 2 x  

2
1  tan  x  cos2 x 
Half Angle formulas:
1  cos2 x 
2
2 x 
1

cos
cos 2 x  
2
sin 2 x  
The above eleven (11) Trigonometric Identities (as well as many other trigonometric identities) can be derived
from DeMoivre’s Formula:
DeMoivre’s Theorem:
p 
,  cos   i sin    cos( p )  i sin( p )
p
For p = 2:
 cos   i sin  
2
 cos(2 )  i sin(2 ) .
 cos2   2i cos  sin   sin 2   cos(2 )  i sin(2 )
 cos2   sin 2   i  2cos sin    cos(2 )  i sin(2 )
So, cos2   sin 2   cos(2 ) and 2 cos  sin   sin(2 )
For p = 3:
 cos   i sin  
3
 cos  3   i sin  3 
 cos3   3i cos2  sin   3cos sin 2   i sin3   cos 3   i sin 3 
 cos3   3cos  sin 2   i 3cos 2  sin   sin 3    cos(3 )  i sin(3 ) .
So, cos3   3cos sin 2   cos(3 ) and 3cos2  sin   sin 3   sin(3 ) .
You can further rearrange these identities using the Pythagorean identities.
For Double-Angle Formula for tan  2x  :
2sin  x  cos  x 
sin  2 x 
2sin  x  cos  x 
cos 2  x 
2 tan  x 
tan  2 x  



2
2
2
2
cos  2 x  cos  x   sin  x  cos  x   sin  x  1  tan 2  x 
cos 2  x 
For half-angle formulas:
Rewrite double-angle formulas. For example,
cos 2   sin 2   cos(2 )  cos 2   1  cos 2    cos(2 )
 2 cos 2   1  cos(2 )  cos 2  
1  cos(2 )
2
For Addition Formulas:
 cos  s   i sin  s  cos t   i sin t   cos(s  t )  i sin(s  t )
 cos  s  cos  t   i cos  s  sin t   i sin  s  cos t   sin  s  sin t   cos(s  t )  i sin(s  t )
 cos  s  cos  t   sin  s  sin  t   i cos  s  sin  t   sin  s  cos  t    cos( s  t )  i sin( s  t ) .
So, cos  s  cos  t   sin  s  sin t   cos(s  t ) and cos  s  sin  t   sin  s  cos  t   sin(s  t ) .
For tan  s  t  :
cos  s  sin  t   sin  s  cos  t 
sin  s  t  cos  s  sin  t   sin  s  cos  t 
cos  s  cos  t 
tan  t   tan  s 
tan  s  t  



cos  s  t  cos  s  cos  t   sin  s  sin  t  cos  s  cos  t   sin  s  sin  t  1  tan  s  tan  t 
cos  s  cos  t 
For Subtraction Formulas:
Use the Odd and Even Properties. For example,
cos  s  t   cos  s  (t )   cos  s  cos  t   sin  s  sin  t   cos  s  cos t   sin  s  sin t  .
Trigonometric Functions
Function
f ( x)  sin( x)
Domain
 ,  
Range
[ 1,1]
f ( x)  cos( x)
 ,  
[ 1,1]
f ( x)  tan( x)



 x | x   n , n  
2


 ,  
f ( x)  cot( x)
x | x  n , n  
x | x  n , n  
 ,  
 , 1] [1,  
f ( x)  sec( x)



 x | x   n , n  
2


 , 1] [1,  
f ( x)  sin 1 ( x)
 arcsin( x)
[ 1,1]
  
  2 , 2 
f ( x)  cos 1 ( x)
 arccos( x)
[ 1,1]
[0,  ]
f ( x)  tan 1 ( x)
 arctan( x)
 ,  
  
 , 
 2 2
f ( x)  csc( x)
Graph
Trigonometric Ratios of the Reference Angles
Recognize the patterns in each column.
Reference
Angles
sin(t)
cos(t)
0°
0
0
2
4
1
2

6
30°
1 1

2
2
3
2

4
45°
2
2
2
2

3
60°
3
2
1 1

2
2

2
90°
4
1
2
0
0
2
t
0
tan(t)
cot(t)
csc(t)
sec(t)
θ
0
2  0 0
1
4
2
undefined
1
2  1  3
3
3
3
2
2
2 1
2
2
3
2  3 3
1
1
2
4
2 1
0
0
2
 undefined
3
1
0

1

2
2
1

2
2
3
3

2
1
2
1
3
4
2 3
3
2
2
1
0
1
2
 undefined
1
2
1
2
0

2
3
2

2
1
2
2 3
3
2
undefined
Evaluating Trigonometric Functions
Steps:
1. Identify the quadrant for given angle:
i. (0, 0.5π) is Quadrant I
ii. (0.5π, π) is Q II
iii. (π, 1.5π) is Q III
iv. (1.5π, 2π) is Q IV
2. Use definitions of trigonometric functions on the unit circle, to determine if answer is + or –.
3. Identify the reference angle using first column of the above table.
4. Identify the ratio using the appropriate column and row.
 7 
Example: Evaluate cos 

 4 
1. 7/4 = 1.75 which is between 1.5 and 2, so the angle is in Q IV;
2. cos t  x ; x > 0 in Q IV;
3. Reference angle is π/4 (using the denominator of given angle);
2
 7 
 
4. So, cos 
.
   cos    
2
 4 
4
Evaluating Trigonometric Functions
Steps:
1. Use the given ratio and the appropriate column and row of the above table to identify reference angle:
2. Use sign and the domain and range of inverse trigonometric function to determine the quadrant.
3. Use reference angle and quadrant to find the angle:
i. Quadrant I: angle = reference angle
ii. Q II: angle = π – reference angle
iii. Q III: angle = π + reference angle
iv. Q IV: angle = 2π – reference angle

Example: Evaluate tan 1  3

1. 3 in the tan(t) column is in the π/3 row;
2. tan t  0 in Q IV;


3. Angle is 2π – π/3 = 5π/3. Thus, tan 1  3 
5
.
3
Solving Trigonometric Equations
Steps:
1. Move all terms to one side of equation;
2. Factor and set each factor to zero [i.e., Use the Zero-Product Property of Real Numbers];
3. Rearrange each equation in Step 2 and solve by evaluating inverse trigonometric functions;
4. Use period of the trigonometric function to find all solutions.
Example: Solve sin  2 x   cos( x)
1. sin  2 x   cos( x)  0 ;
2. sin  2 x   cos( x)  0  2sin( x)cos( x)  cos( x)  0  cos( x) 2sin( x) 1  0 ;
3. cos( x)  0  x 
 3
,
2 2
3
 n(2 ), n 
4. x   n(2 ), n  ;
2
2

Example: Solve sin  2t  
1
 5
x ,
.
2
6 6

5
 n(2 ), n 
and x   n(2 ), n  ;
6
6
and 2sin( x)  1  0  sin( x) 
2
2
Simplifying Trigonometric Expressions
cos2 ( x)sin( x)  sin 3 ( x)
Example: Simplify
.
cos( x)
Example: Simplify
sin(2 x)
.
cos( x)
Practice
Evaluate.
 3 
1. sin  
 4 
 5 
2. sec 

 3 
5. csc1  2 
6. cot 1  1
3. cos  
 7 
4. tan 

 5 
3. sin  2   sin( )
4. cos  3   1
Find ALL Real Solutions to Trigonometric Equations
1. tan  t    3
2. sin  2t  
2
2
Related documents