Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CP1 Math 2 December Cumulative Review SOLUTIONS 1. Given: Μ Μ Μ Μ πΈπ΄ β₯ Μ Μ Μ Μ π·π΅ Μ Μ Μ Μ πΈπ΄ β Μ Μ Μ Μ π·π΅ Μ Μ Μ Μ B is the midpoint of π΄πΆ Μ Μ Μ Μ Μ Μ Μ Μ β₯ π·πΆ Prove: πΈπ΅ Statement 1. Μ Μ Μ Μ πΈπ΄ β₯ Μ Μ Μ Μ π·π΅ 2. β πΈπ΄π΅ β β π·π΅πΆ 3. Μ Μ Μ Μ πΈπ΄ β Μ Μ Μ Μ π·π΅ 4. B is the midpoint of Μ Μ Μ Μ π΄πΆ 5. π΄π΅ β π΅πΆ 6. βπΈπ΄π΅ β βπ·π΅πΆ 7. β πΈπ΅π΄ β β π·πΆπ΅ 8. Μ Μ Μ Μ πΈπ΅ β₯ Μ Μ Μ Μ π·πΆ Reason 1. Given 2. Corresponding Angles Theorem 3. Given 4. Given 5. Definition of midpoint 6. SAS (steps 3, 2, 5) 7. CPCTC 8. Converse of corresponding angles theorem Μ Μ Μ Μ β Μ Μ Μ Μ 2. Given: π΄πΉ π΄πΈ Μ Μ Μ Μ β Μ Μ Μ Μ πΉπ· πΈπ· β 1 β β 2 Μ Μ Μ Μ Prove: Μ Μ Μ Μ π΄π· β₯ πΆπ΅ Statement Μ Μ Μ Μ β Μ Μ Μ Μ 1. π΄πΉ π΄πΈ Μ Μ Μ Μ β Μ Μ Μ Μ 2. πΉπ· πΈπ· 3. Μ Μ Μ Μ π΄π· β Μ Μ Μ Μ π΄π· 4. βπΈπ΄π· β βπΉπ΄π· 5. β πΈπ·π΄ β β πΉπ·π΄ 6. β 1 β β 2 7. β πΆπ·π΄ = β 1 + β πΈπ·π΄ and β π΅π·π΄ = β 2 + β πΉπ·π΄ 8. β πΆπ·π΄ β β π΅π·π΄ 9. β πΆπ·π΄ and β π΅π·π΄ are supplementary 10. β π΅π·π΄ = β πΆπ·π΄ = 90° Μ Μ Μ Μ β₯ πΆπ΅ Μ Μ Μ Μ 11. π΄π· Reason 1. Given 2. Given 3. Reflexive Property 4. SSS 5. CPCTC 6. Given 7. Whole = sum of parts 8. Addition property 9. They form a straight line 10. They are supplementary and congruent 11. Definition of perpendicular K 3. Given: β 1 β β 2 πΉπΊ β πΎπ πΊπ½ β π»πΎ Prove: πΉπ» β₯ π½π Statement 1. πΊπ½ β π»πΎ 2. πΊπ½ = πΊπ» + π»π½ and π»πΎ = π½πΎ + π»π½ 3. πΊπ» + π»π½ β π½πΎ + π»π½ 4. πΊπ» β π½πΎ 5. πΉπΊ β πΎπ 6. β 1 β β 2 7. βπΉπΊπ» β βππΎπ½ 8. β 3 β β 4 9. πΉπ» β₯ π½π 2 F J 3 4 H 1 G Reason 1. Given 2. Segment addition (whole = sum of parts) 3. Substitution property 4. Subtraction property 5. Given 6. Given 7. SAS 8. CPCTC 9. Converse of Alt. Ext. Angles Theorem Μ Μ Μ Μ 4. Given: Μ Μ Μ Μ π΄π΅ β π΅πΆ Μ Μ Μ Μ π΄π· β Μ Μ Μ Μ π·πΆ Prove: β 1 β β 2 Statement Μ Μ Μ Μ β π·πΆ Μ Μ Μ Μ 1. π΄π· 2. 3. 4. 5. 6. 7. β 3 β β 4 Μ Μ Μ Μ Μ Μ Μ Μ π΄π΅ β π΅πΆ β π΅π΄πΆ β β π΅πΆπ΄ β π΅π΄πΆ = β 1 + β 3 and β π΅πΆπ΄ = β 2 + β 4 β 1 + β 3 β β 2 + β 4 β 1 β β 2 Reason 1. Given 2. ITT 3. Given 4. ITT 5. Angle Addition (whole = sum of parts) 6. Substitution 7. Subtraction Property M 5. A twist on what you have done before β¦ Given: Transversal t cuts a and b. β 1 β β 2 Prove: β 1 β β 3 6. Statement Reason 1. β 1 β β 2 1. Given 2. β 2 β β 3 2. VAT (Vertical angles are congruent) 3. β 1 β β 3 3. Transitive property Given: Μ Μ Μ Μ πΆπΉ β Μ Μ Μ Μ πΆπΈ β Μ Μ Μ Μ πΈπ· Show that π¦ = 3π₯. Algebra: Reasons (but you donβt need these as this is not a proof) β π· = π₯ β πΆπΈπ· = 180 β 2π₯ β πΆπΈπΉ = 2π₯ β πΆπΉπΈ = 2π₯ β πΉπΆπΈ = 180 β 4π₯ β π΄πΆπ· = 180 = π¦ + (180 β 4π₯) + π₯ 0 = π¦ β 3π₯ 3π₯ = π¦ (ITT) (Triangle Angle Sum) (Supplementary to β πΆπΈπ·) (ITT) (Triangle Angle Sum) (Definition of straight angle) (Algebra) 7. Given: π΄π΅πΆπ· and π΄π΅ππ are parallelograms Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ β ππΆ π΅π π·πΆππ is a straight line Prove: Points C and Y trisect π·πΆππ Statement 1. π΄π΅πΆπ· and π΄π΅ππ are parallelograms 2. π΄π΅ β π·πΆ and π΄π΅ β ππ 3. π·π β₯ π΄π΅ 4. β ππΆπ β β π΄π΅π 5. β πΆππ β β π΅ππ΄ 6. ΞπΆππ β βπ΅ππ΄ 7. π΄π΅ β πΆπ 8. π·πΆ β πΆπ β ππ 9. Points C and Y trisect π·πΆππ Reason 1. Given 2. Opposite sides of parallelograms are congruent 3. Definition of parallelogram 4. PAI 5. VAT (Vertical angles are congruent) 6. ASA 7. CPCTC 8. Transitive Property (they are all congruent to π΄π΅) 9. Definition of trisect 8. Given: πΈπ· β πΈπΉ πΈπ» β πΈπΊ β 1 β β 2 Prove: βπ·π½π» β βπΉπΎπΊ Statement 1. πΈπ· β πΈπΉ 2. β 5 β β 6 3. 4. 5. 6. 7. 8. 9. πΈπ» β πΈπΊ β 1 β β 2 ΞπΈπ·π» β βπΈπΉπΊ β πΈπ»π· β β πΈπΊπΉ π·π» β πΊπΉ β πΈπ·π» β β πΈπΉπΊ β πΈπ·π» = β 5 + β 3 and β πΈπΉπΊ = β 6 + β 4 Reason 1. Given 2. ITT 3. Given 4. 5. 6. 7. 8. 9. Given SAS (steps 1, 4, 3) CPCTC CPCTC CPCTC Angle addition (whole = sum of parts) 10. β 3 β β 4 10. Addition property 11. βπ·π½π» β βπΉπΎπΊ 11. AAS 9. True 10. False. π΄π΅πΆπ· could be a rectangle or an isosceles trapezoid. 11. False. π΄π΅πΆπ· could be a kite. But if BOTH pairs of opposite angles were congruent, then this statement would be true. 12. True. You can prove this if you want extra proof-writing practice ο 13. Given ππΌπΆπΈ is a kite. ππΈ = β6; ππΌ = 2; πΈπΆ = 2β6 a. Find the perimeter of ππΌπΆπΈ. β6 + β6 + 2β6 + 2β6 = πβπ b. Find the area of ππΌπΆπΈ. First use Pythagorean Theorem to find the lengths of ππ and ππΆ: (β6)2 = 22 + ππ 2 (2β6)2 = 22 + ππΆ 2 2 2 ππ = 2 ππ = β2 ππΆ = 20 ππΆ = β20 = 2β5 1 Area of βπΈπΆπΌ = 2 (4)(2β5) = 4β5 1 Area of βπΈππΌ = 2 (4)(β2) = 2β2 Total area = πβπ + πβπ (Work shown for #14-16 on the pages following) 14. a) β64 1 c) 2 15. a) 2β10 25 16. a) π₯ = 1 b) No real solutions because you cannot take an even root of a negative number d) π¦8 25 9 6 1 f) 2π¦ 2 β ( 3 ) e) 4π₯ 4 2 b) 25 + 5β5 b) π₯ = 2 βπ₯ c) 3 c) π₯ = 4 β7 7 π 4 g) π β β4 Work for #14-16: