Download december-review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CP1 Math 2
December Cumulative Review SOLUTIONS
1. Given: Μ…Μ…Μ…Μ…
𝐸𝐴 βˆ₯ Μ…Μ…Μ…Μ…
𝐷𝐡
Μ…Μ…Μ…Μ…
𝐸𝐴 β‰… Μ…Μ…Μ…Μ…
𝐷𝐡
Μ…Μ…Μ…Μ…
B is the midpoint of 𝐴𝐢
Μ…Μ…Μ…Μ…
Μ…Μ…Μ…Μ… βˆ₯ 𝐷𝐢
Prove: 𝐸𝐡
Statement
1. Μ…Μ…Μ…Μ…
𝐸𝐴 βˆ₯ Μ…Μ…Μ…Μ…
𝐷𝐡
2. ∠𝐸𝐴𝐡 β‰… ∠𝐷𝐡𝐢
3. Μ…Μ…Μ…Μ…
𝐸𝐴 β‰… Μ…Μ…Μ…Μ…
𝐷𝐡
4. B is the midpoint of Μ…Μ…Μ…Μ…
𝐴𝐢
5. 𝐴𝐡 β‰… 𝐡𝐢
6. βˆ†πΈπ΄π΅ β‰… βˆ†π·π΅πΆ
7. ∠𝐸𝐡𝐴 β‰… ∠𝐷𝐢𝐡
8. Μ…Μ…Μ…Μ…
𝐸𝐡 βˆ₯ Μ…Μ…Μ…Μ…
𝐷𝐢
Reason
1. Given
2. Corresponding Angles Theorem
3. Given
4. Given
5. Definition of midpoint
6. SAS (steps 3, 2, 5)
7. CPCTC
8. Converse of corresponding angles theorem
Μ…Μ…Μ…Μ… β‰… Μ…Μ…Μ…Μ…
2. Given: 𝐴𝐹
𝐴𝐸
Μ…Μ…Μ…Μ… β‰… Μ…Μ…Μ…Μ…
𝐹𝐷
𝐸𝐷
∠1 β‰… ∠2
Μ…Μ…Μ…Μ…
Prove: Μ…Μ…Μ…Μ…
𝐴𝐷 βŠ₯ 𝐢𝐡
Statement
Μ…Μ…Μ…Μ… β‰… Μ…Μ…Μ…Μ…
1. 𝐴𝐹
𝐴𝐸
Μ…Μ…Μ…Μ… β‰… Μ…Μ…Μ…Μ…
2. 𝐹𝐷
𝐸𝐷
3. Μ…Μ…Μ…Μ…
𝐴𝐷 β‰… Μ…Μ…Μ…Μ…
𝐴𝐷
4. βˆ†πΈπ΄π· β‰… βˆ†πΉπ΄π·
5. ∠𝐸𝐷𝐴 β‰… ∠𝐹𝐷𝐴
6. ∠1 β‰… ∠2
7. ∠𝐢𝐷𝐴 = ∠1 + ∠𝐸𝐷𝐴 and ∠𝐡𝐷𝐴 = ∠2 +
∠𝐹𝐷𝐴
8. ∠𝐢𝐷𝐴 β‰… ∠𝐡𝐷𝐴
9. ∠𝐢𝐷𝐴 and ∠𝐡𝐷𝐴 are supplementary
10. ∠𝐡𝐷𝐴 = ∠𝐢𝐷𝐴 = 90°
Μ…Μ…Μ…Μ… βŠ₯ 𝐢𝐡
Μ…Μ…Μ…Μ…
11. 𝐴𝐷
Reason
1. Given
2. Given
3. Reflexive Property
4. SSS
5. CPCTC
6. Given
7. Whole = sum of parts
8. Addition property
9. They form a straight line
10. They are supplementary and congruent
11. Definition of perpendicular
K
3. Given: ∠1 β‰… ∠2
𝐹𝐺 β‰… 𝐾𝑀
𝐺𝐽 β‰… 𝐻𝐾
Prove: 𝐹𝐻 βˆ₯ 𝐽𝑀
Statement
1. 𝐺𝐽 β‰… 𝐻𝐾
2. 𝐺𝐽 = 𝐺𝐻 + 𝐻𝐽 and 𝐻𝐾 = 𝐽𝐾 + 𝐻𝐽
3. 𝐺𝐻 + 𝐻𝐽 β‰… 𝐽𝐾 + 𝐻𝐽
4. 𝐺𝐻 β‰… 𝐽𝐾
5. 𝐹𝐺 β‰… 𝐾𝑀
6. ∠1 β‰… ∠2
7. βˆ†πΉπΊπ» β‰… βˆ†π‘€πΎπ½
8. ∠3 β‰… ∠4
9. 𝐹𝐻 βˆ₯ 𝐽𝑀
2
F
J
3
4
H
1
G
Reason
1. Given
2. Segment addition (whole = sum of parts)
3. Substitution property
4. Subtraction property
5. Given
6. Given
7. SAS
8. CPCTC
9. Converse of Alt. Ext. Angles Theorem
Μ…Μ…Μ…Μ…
4. Given: Μ…Μ…Μ…Μ…
𝐴𝐡 β‰… 𝐡𝐢
Μ…Μ…Μ…Μ…
𝐴𝐷 β‰… Μ…Μ…Μ…Μ…
𝐷𝐢
Prove: ∠1 β‰… ∠2
Statement
Μ…Μ…Μ…Μ… β‰… 𝐷𝐢
Μ…Μ…Μ…Μ…
1. 𝐴𝐷
2.
3.
4.
5.
6.
7.
∠3 β‰… ∠4
Μ…Μ…Μ…Μ…
Μ…Μ…Μ…Μ…
𝐴𝐡 β‰… 𝐡𝐢
∠𝐡𝐴𝐢 β‰… ∠𝐡𝐢𝐴
∠𝐡𝐴𝐢 = ∠1 + ∠3 and ∠𝐡𝐢𝐴 = ∠2 + ∠4
∠1 + ∠3 β‰… ∠2 + ∠4
∠1 β‰… ∠2
Reason
1. Given
2. ITT
3. Given
4. ITT
5. Angle Addition (whole = sum of parts)
6. Substitution
7. Subtraction Property
M
5. A twist on what you have done before …
Given: Transversal t cuts a and b.
∠1 ≇ ∠2
Prove: ∠1 ≇ ∠3
6.
Statement
Reason
1. ∠1 ≇ ∠2
1. Given
2. ∠2 β‰… ∠3
2. VAT (Vertical angles are congruent)
3. ∠1 ≇ ∠3
3. Transitive property
Given: Μ…Μ…Μ…Μ…
𝐢𝐹 β‰… Μ…Μ…Μ…Μ…
𝐢𝐸 β‰… Μ…Μ…Μ…Μ…
𝐸𝐷
Show that 𝑦 = 3π‘₯.
Algebra:
Reasons (but you don’t need these as this is not a proof)
∠𝐷 = π‘₯
∠𝐢𝐸𝐷 = 180 βˆ’ 2π‘₯
∠𝐢𝐸𝐹 = 2π‘₯
∠𝐢𝐹𝐸 = 2π‘₯
∠𝐹𝐢𝐸 = 180 βˆ’ 4π‘₯
∠𝐴𝐢𝐷 = 180 = 𝑦 + (180 βˆ’ 4π‘₯) + π‘₯
0 = 𝑦 βˆ’ 3π‘₯
3π‘₯ = 𝑦
(ITT)
(Triangle Angle Sum)
(Supplementary to ∠𝐢𝐸𝐷)
(ITT)
(Triangle Angle Sum)
(Definition of straight angle)
(Algebra)
7. Given: 𝐴𝐡𝐢𝐷 and π΄π΅π‘‹π‘Œ are parallelograms
Μ…Μ…Μ…Μ…Μ…
Μ…Μ…Μ…Μ…Μ… β‰… 𝑀𝐢
𝐡𝑀
π·πΆπ‘Œπ‘‹ is a straight line
Prove: Points C and Y trisect π·πΆπ‘Œπ‘‹
Statement
1. 𝐴𝐡𝐢𝐷 and π΄π΅π‘‹π‘Œ are parallelograms
2. 𝐴𝐡 β‰… 𝐷𝐢 and 𝐴𝐡 β‰… π‘‹π‘Œ
3. 𝐷𝑋 βˆ₯ 𝐴𝐡
4. βˆ π‘ŒπΆπ‘€ β‰… βˆ π΄π΅π‘€
5. βˆ πΆπ‘€π‘Œ β‰… βˆ π΅π‘€π΄
6. Ξ”πΆπ‘€π‘Œ β‰… βˆ†π΅π‘€π΄
7. 𝐴𝐡 β‰… πΆπ‘Œ
8. 𝐷𝐢 β‰… πΆπ‘Œ β‰… π‘‹π‘Œ
9. Points C and Y trisect π·πΆπ‘Œπ‘‹
Reason
1. Given
2. Opposite sides of parallelograms are congruent
3. Definition of parallelogram
4. PAI
5. VAT (Vertical angles are congruent)
6. ASA
7. CPCTC
8. Transitive Property (they are all congruent to 𝐴𝐡)
9. Definition of trisect
8. Given: 𝐸𝐷 β‰… 𝐸𝐹
𝐸𝐻 β‰… 𝐸𝐺
∠1 β‰… ∠2
Prove: βˆ†π·π½π» β‰… βˆ†πΉπΎπΊ
Statement
1. 𝐸𝐷 β‰… 𝐸𝐹
2. ∠5 β‰… ∠6
3.
4.
5.
6.
7.
8.
9.
𝐸𝐻 β‰… 𝐸𝐺
∠1 β‰… ∠2
Δ𝐸𝐷𝐻 β‰… βˆ†πΈπΉπΊ
∠𝐸𝐻𝐷 β‰… ∠𝐸𝐺𝐹
𝐷𝐻 β‰… 𝐺𝐹
∠𝐸𝐷𝐻 β‰… ∠𝐸𝐹𝐺
∠𝐸𝐷𝐻 = ∠5 + ∠3 and ∠𝐸𝐹𝐺 = ∠6 + ∠4
Reason
1. Given
2. ITT
3. Given
4.
5.
6.
7.
8.
9.
Given
SAS (steps 1, 4, 3)
CPCTC
CPCTC
CPCTC
Angle addition (whole = sum of parts)
10. ∠3 β‰… ∠4
10. Addition property
11. βˆ†π·π½π» β‰… βˆ†πΉπΎπΊ
11. AAS
9. True
10. False. 𝐴𝐡𝐢𝐷 could be a rectangle or an isosceles trapezoid.
11. False. 𝐴𝐡𝐢𝐷 could be a kite. But if BOTH pairs of opposite angles were congruent, then this statement
would be true.
12. True. You can prove this if you want extra proof-writing practice 
13. Given 𝑁𝐼𝐢𝐸 is a kite. 𝑁𝐸 = √6;
𝑀𝐼 = 2; 𝐸𝐢 = 2√6
a. Find the perimeter of 𝑁𝐼𝐢𝐸.
√6 + √6 + 2√6 + 2√6 = πŸ”βˆšπŸ”
b. Find the area of 𝑁𝐼𝐢𝐸.
First use Pythagorean Theorem to find the lengths of 𝑁𝑀 and 𝑀𝐢:
(√6)2 = 22 + 𝑁𝑀
2
(2√6)2 = 22 + 𝑀𝐢
2
2
2
𝑁𝑀 = 2
𝑁𝑀 = √2
𝑀𝐢 = 20
𝑀𝐢 = √20 = 2√5
1
Area of βˆ†πΈπΆπΌ = 2 (4)(2√5) = 4√5
1
Area of βˆ†πΈπ‘πΌ = 2 (4)(√2) = 2√2
Total area = πŸ’βˆšπŸ“ + 𝟐√𝟐
(Work shown for #14-16 on the pages following)
14. a) βˆ’64
1
c) 2
15. a)
2√10
25
16. a) π‘₯ = 1
b) No real solutions because you cannot take an even root of a negative number
d)
𝑦8
25
9
6
1
f) 2𝑦 2 βˆ™ ( 3 )
e) 4π‘₯ 4
2
b) 25 + 5√5
b) π‘₯ = 2
√π‘₯
c)
3
c) π‘₯ = 4
√7
7
𝑏
4
g) π‘Ž βˆ™ √4
Work for #14-16:
Related documents