Download 3. Quantum Field Theory (QFT) — Renormalisation How do we

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3. Quantum Field Theory (QFT)
—
Renormalisation
How do we measure particles
• We can measure tracks of individual charged particles with
– pixel detectors
– wire chambers
⇒ we measure the 3-momentum p
~
• We can measure the energy of particles in
– calorimeters
⇒ we measure the energy E
• We can distinguish different kinds of particles by
– sets of Cherenkov counters
– comparing calorimeter- and track-data
⇒ reconstructing the 4-momentum: E 2 = p
~2 + m2
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
1
3. Quantum Field Theory (QFT)
—
Renormalisation
How do we measure intermediate particles
• masses are measured for instance with ”invariant-mass distributions ”
• example:
e+ e− → Z → µ+µ−
– the 4-momenta of the muons are reconstructed
– these 4-momenta are summed up and squared: M 2
– events with 2 muons are distributed according to M 2:
∗ this gives a Breit-Wigner distribution (on top of a background)
– measured mass = position of the peak in the Breit-Wigner curve
• couplings are measured with the strength of the interaction
• example:
H → µ+µ− versus
H → bb̄
– identifying the decaying particle in all events
#events(H→µ+ µ− )
– relative coupling strength = #events(H→bb̄)
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
2
3. Quantum Field Theory (QFT)
—
Renormalisation
How do we calculate
• we generate all Feynman diagrams {f } for the process
• we calculate the amplitude for each Feynman diagram Mf
P
• we add up all amplitudes M = f Mf
• we square the modulus |M|2
• we integrate over the Lorentz invariant phase space dLips
µ
µ
2
.
.
.
p
|M|
dLips(p
dσ = symmetry
n)
1
f lux
µ
µ
– momentum-conservation P µ = Pin = i pi
– and each particle i in the final state contributes, so
X
Y
d3p
~i
µ
µ
4
4
dLips(p1 . . . pn ) = (2π) δ (P −
pi)
3 2E
(2π)
p
~i
i
i
P
• in perturbation theory, we expand in orders of the coupling constant g:
M=
X
k
g M
(k)
where
M
(k)
=
k
Thomas Gajdosik – Concepts of Modern Theoretical Physics
X
(k)
Mf
f
13.09.2012
3
3. Quantum Field Theory (QFT)
—
Renormalisation
How do we calculate
• When perturbation theory is applicable: |g nM(n)| > |g n+1M(n+1)|
– the leading order (LO) is the smallest n with |M(n)| > 0
– the next-to leading order (NLO) is then n + 1 or n + 2.
• the cross section is also a sum over powers of the coupling constant g:
P
where
dσ (2n) = |g nM(n)|2dLips
and
dσ = k=2n g k dσ (k)
h
i
dσ (2n+1) = (g nM(n))†(g n+1M(n+1)) + (g nM(n))(g n+1M(n+1))† dLips
• we identified the ”physical” coupling g from the measurement of σ
– LO:
– NLO:
R
LO
σ
= dσ (2n)
R
NLO
(2n)
σ
= (dσ
+ dσ (2n+1))
• if σ LO 6= σ NLO . . . what is now the right σ ?
Thomas Gajdosik – Concepts of Modern Theoretical Physics
⇒
13.09.2012
Renormalisation
4
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• we have 3 real scalar fields A, B, and C and 1 coupling g:
1 Φ (∂ 2 + m2 )Φ + g A B C
L0 = − 2
0
0 0 0 0
0
0,Φ
where
Φ = A, B, C
−1
– masses are the poles in the propagators i × [p2 − m2
0,Φ + iǫ]
– the coupling connects all three different fields
B
C
.
• having the physical masses as mA > mB + mC ,
.A
– A will decay into B and C:
– at LO there is only one diagram, which gives g 1M(1) = g
3
3
d p
~B
d p
~C
dΩ κ
– dLips = (2π)4δ 4(pA − pB − pC ) (2π)
=
3 2E
3
(4π)2 ABC
p
~B (2π) 2Ep
~C
1
σ LO(A → BC) =
2mA
Z
g 2 κABC
κABC =
|g|
2
(4π)
4π 2mA
2 dΩ
g2
• g or α = 4π can be determined from the decay!
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
5
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
we calculate now σ NLO(A → BC)
B
.
C
B
.
C
B
.C
• there is no diagram of order g 2
• there are 4 diagrams of order g 3
.
A
.
A
.
A
– 3 of them have a ”bubble” on an external line
⇒
we will have to renormalise also the propagators!
∗ as it turns out, they will not contribute (on-shell scheme)
B
– the 4th diagram is just a triangle
∗ which is usually not zero
∗ but depends on incoming and outgoing momenta
.
.C
A
– so g 3M(3) = g 3tABC
h
i dΩ
1
2
3
†
†
3
κABC
|g| + g × (g tABC ) + g × (g tABC )
2mA
(4π)2
Z
g 2 κABC 2
1 + 2g TABC
with TABC = dΩ
=
4π Re[tABC ]
4π 2mA
NLO
σ(A→BC)
=
Z
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
6
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• but we calculated with g0, not with the measured g !
• the same happens to the other parameters of the theory
• writing
g0 = g + δg ,
2
2
m2
0,Φ = mΦ + δmΦ , and
Φ0 =
q
ZΦ Φ = Φ + 1
2 δZΦ Φ
we get a new Lagrangian
q
2
2
2
1
L0 = − 2 ZΦΦ(∂ + mΦ + δmΦ)Φ + (g + δg) ZAZB ZC ABC = L + δL
with
1 Φ(∂ 2 + m2 )Φ + gABC
L = −2
Φ
1 Φ[δZ (∂ 2 + m2 ) + δm2 ]Φ + [ g (δZ + δZ + δZ ) + δg] ABC
δL = − 2
Φ
A
B
C
Φ
Φ
2
where only terms linear in the expansion of the parameters are kept.
• We assume only one-loop accuracy for now.
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
7
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• Introducing abbreviations for the loops
pi
• The self energies iΠ(p2) =
.
pf
g2
2
= i (4π)2 B0(p2; m2
0, m1 )
.
• Using the Feynman rules we get to one loop
iΠ(p2i )(2π)4δ 4(pi − pf )
Z
d4 k1 d4k2 (ig)(2π)4δ 4 (pi − k1 − k2)i (ig)(2π)4δ 4(k1 + k2 − pf )i
=
(2π)4 (2π)4
k12 − m21
k22 − m20
Z
2
1
g
2
2 −1
4
2
2 −1
]
[(q
+
p
)
−
m
d
q
[q
−
m
= i(2π)4δ 4 (pi − pf )
i
1]
0
(4π)2 iπ 2
2
g
2
2
2
=: i(2π)4δ 4 (pi − pf ) (4π)
2 B0 (pi ; m0 , m1 )
pB
2 2
• In a similar way the vertex correction iT (p2
A , pB , pC )
is written with the function
=
g3
).
, m2
, m2
; m2
, p2
, p2
C0(p2
2
C
B
A
B
A
C
(4π)
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
p. C
pA
8
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• Now we have 7 counterterms that we should detemine: δm2
Φ , δZΦ , δg
• they also give rise to new diagrams:
– six counterterms are used by iδZΦ
(p2
−
m2Φ )
−
iδm2Φ
p
.p
=
.
pB
p. C
– the 7th counterterm by iCg = ig2 (δZA + δZB + δZC ) + iδg =
.
pA
• We have to choose Renormalisation conditions for them.
We can take (without proof):
1. the pole of the full propagator should be at m2
Φ
⇒
2
δm2
Φ = Π(mΦ )
2. the residuum of the full propagator should be 1
⇒
d Π(x)|
′ (m2 )
=
−Π
δZΦ = − dx
2
Φ
x=m
Φ
3. the full decay width of A should be like in the tree level.
⇒
2 , m2 ) − g (δZ + δZ + δZ )
,
m
δg = −T (m2
A
B
C
C
B
A
2
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
9
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• Calculating the NLO matrix element for the decay of A → B + C,
we have to add 9 diagrams:
B
B
C
.
.
+
b
A
C
.
.
C
+
B
.
.
C
+
c
A
B
d
.
C
.
+
A
B
C
.
B
.
C
.
B
C
.
+
h
A
A
.
+
g
A
e
A
.
+
f
.
B
C
.
+
a
B
.
i
A
.
A
2
• adding c + g and Taylor expanding around p2
A = mA gives
2
2
2
2
2
′
2
2
2 ) − δm2
Π(mA) + Π (mA)(pA − mA) + O (pA − mA)
δZA(p2
−
m
A
A
A
−
g
−g
2
2
p2
p2
A − mA
A − mA
2
2
= O (pA − mA)
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
10
3. Quantum Field Theory (QFT)
—
Renormalisation
Example of Renormalisation: ABC-theory
• a gives now g 1M(1) = g
2
2
• c + g , d + h , and e + i are all O (pA − mA)
• so g 3M(3) = limp2 →m2 ( b + · · · + i ) = limp2 →m2 ( b + f )
Φ
Φ
Φ
Φ
g
2
2
)
+
,
m
,
m
= T (m2
C
B
A
2 (δZA + δZB + δZC ) + δg = 0
• So now σ LO = σ NLO for this decay !
• g can be determined unambiguously.
• but where do come new predictions?
– A → 3B + C or A → B + 3C or . . .
– scattering B + C → B + C: dσ(BC → BC)
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
11
3. Quantum Field Theory (QFT)
—
Renormalisation
s
Example of Renormalisation: ABC-theory, dσ(BC → BC)
• with the same argument as before: no corrections on external legs
• contributing diagrams to the s-channel,
initial momenta k, final momenta p:
C
B.
C
B.
+
.
B
C
a
C
B.
+
.
B
C
b
C
B.
+
.
B
C
c
C
B.
+
.
B
C
d
C
B.
+
.
B
C
e
C
B.
+
.
B
C
f
C
B.
+
.
B
C
g
.
B
C
h
2 = p2 = m2 , k2 = p2 = m2 , and (k + k )2 = (p + p )2 = s.
• kB
B
C
B
C
C
C
C
B
B
• a = (ig)2
g2
i
2
(2)
so g M
=−
s−m2
s−m2
A
A
• .b + c + d + e
=
2 , k2 )
i3gT (s, p2B , p2C )
i3gT (s, kB
i3gCg
i3gCg
C
+
+
+
2
2
2
s − mA
s − mA
s − mA
s − m2A
T (s, m2B , m2C ) − T (m2A , m2B , m2C )
2 0
= −2ig
= O (s − mA )
s − m2A
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
12
3. Quantum Field Theory (QFT)
—
Renormalisation
s
Example of Renormalisation: ABC-theory, dσ(BC → BC)
• .f + g
=
(ig)2i2iδZA (s − m2A ) − δm2A
(ig)2i2iΠ(s)
+
(s − m2A )2
(s − m2A )2
= ig
2 Π(s)
− δm2A + δZA (s − m2A )
2 0
2
)
−
m
=
O
(p
A
A
(s − m2A)2
2 , k 2 ; (−p − p )2 , (−p + k )2 ; m2 , m2 , m2 , m2 )
• h = g 4Dbox (p2B , p2C , kC
B
C
C
C
B
A
C
A
B
4
(4)
• .g M
• so
g 2[Π(s) − Π(m2A )] 2g[T (s) − T (m2A )] + g 2Π′ (m2A )
g2
−
+ Dbox =:
∆M
=
(s − m2A )2
s − m2A
s − m2A
dσ LO
s
(BC →BC)
• and dσ NLOs
(BC →BC)
1
=
2κsBC
2 2
−g 2 2 dΩ κsBC
g
dΩ
=
s − m2 (4π)2 2s
4π
4s(s − m2 )2
A
A
−g 2
g4
dΩ κsBC
1
4
(4)
+
·
2Re[g
M
]
=
2κsBC (s − m2A )2
s − m2A
(4π)2 2s
2 2
dΩ
g
LO
−
2Re[∆M])
=
6
dσ
=
(1
s
(BC →BC)
4π
4s(s − m2A )2
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
13
3. Quantum Field Theory (QFT)
—
Renormalisation
Regularisation
• is the prescription, how to deal with undefined integrals
• examples:
– only integrating up to p2 < Λ
– subtracting the integrand with a regulator mass (Pauli-Villars)
– making the dimension continuous (dimensional regularisation)
• the physical result cannot depend on the regularisation
• the counterterms can ”absorb” the regularisation constants
⇒
renormalisable theory
Regularisation in ABC
• only the selfenergies had ill defined integrals
• δZΦ and δm2
Φ contain regularisation constants
• but they drop out in all physical processes
Thomas Gajdosik – Concepts of Modern Theoretical Physics
13.09.2012
14
Related documents