Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Supplementary Information Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool Weipeng Zhang1, Yong Wang2, Salim Bougouffa3, Renmao Tian1, Huiluo Cao1, Yongxin Li1 Lin Cai1, Yue Him Wong1, Gen Zhang1, Xixiang Zhang3, Vladimir B Bajic3, Abdulaziz Al-Suwailem3, Pei-Yuan Qian1,2# 1 KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 2 Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China 3 King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia Running title: metagenomics of cold seep biofilms Keywords: microbial adaptation; extreme condition; inter-species interaction; genome binning # Corresponding author: Pei-Yuan Qian, PhD, Chair professor, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China Phone: 0852-2358-7331, Fax: 0852-2358-1559 E-mail: [email protected] 1 Figure S1 Similarity of functional communities from the biofilms illustrated by individual gene ontology (GOs) and abundance-based PCoA plot. GOs with >0.5% relative abundance in at least one sample were included in PCoA using the PAST software. 2 Figure S2 The GOs differentiating the brine water and 6d-brine biofilm metagenomes. Comparison was performed based on Similarity percentage analyses (SIMPER) as described in the Methods section. Nitrogen cycle, polysaccharide metabolism and proteolysis related functions were highlighted in blue, red and green respectively. 3 Figure S3 The carbohydrate-Active enZYmes (CAZys) differentiating the 6d-brine and 6d-NBW biofilm metagenomes. Comparison of 6d-brine versus 6d-NBW biofilms was performed based on SIMPER analysis. CAZys were presented in the order of their contributions to differences (highest to lowest, bottom to top). 4 Figure S4 Classification of the transporters in the 6d-brine and 6d-NBW biofilm metagenomes. The transporters were identified and classified based on BLAST search against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with e <10-5. 5 Figure S5 Neighbor-joining phylogenetic organization of the strain deltaproteobacterium sp. nov. and close-related Deltaproteobacteria strains. The phylogenetic tree was constructed using concatenated 31 essential genes. The reference genomes were obtained form the NCBI database. Bootstrap values based on 1000 replications are shown on the nodes. 6 Figure S6 Neighbor-joining phylogenetic organization of the strain epsilonproteobacterium sp. nov. and close-related Epsilonproteobacteria strains. The phylogenetic trees was constructed using concatenated 31 essential genes. The reference genomes were obtained form the NCBI database. Bootstrap values based on 1000 replications are shown on the nodes. 7 a 8 b 9 c Figure S7 Neighbor-joining phylogenetic tree of the ChaB (a) and diguanylate cyclase diguanylate cyclase (b) in epsilonproteobacterium sp. nov.. Bootstrap values based on 1000 replications are shown on the nodes. These two genes are phylogenetically close to homologs from Gammaproteobacteria. The adjacent genes including flagellin, DNA binding protein, histidine kinase and ABC transporter, which are phylogenetically close to Epsilonproteobacteria, are also shown (c). 10 Figure S8 Network of co-occurring 97% cutoff OTUs based on correlation analysis of the 47 biofilm samples and 4 water samples. The Spearman’s correlation coefficient of >0.8 and statistically P-value of <0.01 were used. The size of each node is proportional to the number of connections. 11 Figure S9 Pictures during the Red Sea cruise. (a) Different types of substrates embedded in the slots of the carousel. The structure of carousel is shown in a previous work (Zhang et al., 2014a). (b) Remotely Operated Vehicle (ROV) working in the Thuwal seep II during 2013 Red Sea cruise. (c, d) The carousels were fixed in the frames and then immersed in the water for biofilm development. 12 Figure S10 Rarefaction curves for the ORF counts of the 6d-brine-Ti (blue line) and 6d-NBW-Ti (red line) biofilm metagenomes and identified GO items. These two metagenomes were selected as representatives and information of other metagenomes was listed in Table S1. 13 Figure S11 Steps in genome binning. Each circle represents a metagenomic contig with size proportional to length and colored by GC content. Only contigs longer than 500 bp were shown. PCoA clustering on tetranucleotide frequencies was performed for further binning. (a, b) Genome binning of the deltaproteobacterium sp. nov.. (c-f) Genome binning of the epsilonproteobacterium sp. nov.. Red color indicated contigs with essential genes. 14 Table S1 Features of the two binned draft genomes. Genome feature or gene function deltaproteobacterium sp. nov. epsilonproteobacterium sp. nov. Genome recovery ~99% ~96% Genome size (Mbp) 2.51 2.19 No. of essential genes 106 103 No. of redundant essential genes 1 2 No. of contigs 121 17 N50 of contigs 208,591 bp 31,011 bp N90 of contigs 81,478 bp 10,933 bp No. of ORFs 2443 2244 GC content (%) 49.3% 49.8% 15 Table S2 Conserved single copy gene sets for genome completeness estimation. The completeness of each population bin was investigated using a suite of hidden Markov models (HMM) covering 107 proteins conserved in 95% of all sequenced bacteria. The number of the 107 single copy genes in deltaproteobacterium sp. nov. and epsilonproteobacterium sp. nov. were compared the complete genomes of their close relatives. 1, deltaproteobacterium sp. nov.; 2, Pelobacter propionicus DSM 2379; 3, Pelobacter carbinolicus DSM 2380; 4, Geoalkalibacter subterraneus Red1; 5, Geobacter lovleyi SZ; 6, Anaeromyxobacter sp. K; 7, epsilonproteobacterium sp. nov.; 8, Nitratifractor salsuginis DSM 16511; 9, Sulfurovum sp. NBC37-1; 10, Nitratiruptor sp. SB155-2; 11, Nautilia profundicola AmH; 12, Wolinella succinogenes DSM 1740. HMM name Gene name 1 2 3 4 5 6 7 8 9 10 11 12 PF00162 phosphoglycerate kinase 1 1 1 1 1 1 1 1 1 1 1 1 PF00276 ribosomal protein L23 1 1 1 1 1 1 1 1 1 1 1 1 PF00281 ribosomal protein L5 1 1 1 1 1 1 1 1 1 1 1 1 PF00297 ribosomal protein L3 1 1 1 1 1 1 1 1 1 1 1 1 PF00347 ribosomal protein L6 1 1 1 1 1 1 1 1 1 1 1 1 PF00366 ribosomal protein S17 1 1 1 1 1 1 0 1 1 1 1 1 PF00380 ribosomal protein S9 1 1 1 1 1 1 1 1 1 1 1 1 PF00410 ribosomal protein S8 1 1 1 1 1 1 1 1 1 1 1 1 PF00411 ribosomal protein S11 1 1 1 1 1 1 1 1 1 1 1 1 PF00416 ribosomal protein S13 1 1 1 1 1 1 1 1 1 1 1 1 PF00466 ribosomal protein L10 1 1 1 1 1 1 1 1 1 1 1 1 PF00573 ribosomal protein L4 1 1 1 1 1 1 1 1 1 1 1 1 PF00750 tRNA synthetases class I 1 2 2 1 2 2 2 2 2 3 2 2 PF01025 GrpE nucleotide exchange factor 1 1 1 1 1 1 1 1 1 1 1 1 PF01795 MraW methylase family 1 2 2 1 1 1 1 1 1 1 1 1 TIGR00001 ribosomal protein L35 1 1 1 1 1 1 1 1 1 0 1 1 TIGR00002 ribosomal protein S16 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00009 ribosomal protein L28 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00012 ribosomal protein L29 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00019 peptide chain release factor 1 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00029 ribosomal protein S20 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00043 rRNA maturation RNase YbeY 1 1 1 1 1 0 1 1 1 1 1 1 TIGR00059 ribosomal protein L17 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00060 ribosomal protein L18 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00061 ribosomal protein L21 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00062 ribosomal protein L27 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00064 signal recognition particle-docking protein FtsY 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00082 ribosome-binding factor A 1 1 1 1 1 1 1 1 1 1 1 1 16 TIGR00086 SsrA-binding protein 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00092 GTP-binding protein YchF 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00115 trigger factor 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00116 translation elongation factor Ts 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00152 dephospho-CoA kinase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00158 ribosomal protein L9 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00165 ribosomal protein S18 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00166 ribosomal protein S6 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00168 translation initiation factor IF-3 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00234 tyrosine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00337 CTP synthase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00344 alanine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00362 chromosomal replication initiator protein 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00388 glycine-tRNA ligase, alpha subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00392 isoleucine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00396 leucine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00408 proline-tRNA ligase 0 0 0 0 0 1 0 0 0 0 0 0 TIGR00414 serine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00418 threonine-tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00420 tRNA-methyltransferase 1 1 1 1 2 1 1 1 1 1 1 1 TIGR00422 valine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00435 cysteine--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00436 GTP-binding protein Era 2 2 2 2 2 2 2 2 2 2 2 2 TIGR00442 histidine-tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00459 aspartate--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00460 methionyl-tRNA formyltransferase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00468 phenylalanine--tRNA ligase, alpha subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00472 phenylalanine--tRNA ligase, beta subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00487 translation initiation factor IF-2 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00496 ribosome recycling factor 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00575 DNA ligase, NAD-dependent 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00631 excinuclease ABC subunit B 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00663 DNA polymerase III, beta subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00810 preprotein translocase, SecG subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00855 ribosomal protein L12 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00922 NusG antitermination factor 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00952 ribosomal protein S15 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00959 signal recognition particle protein 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00963 preprotein translocase, SecA subunit 1 1 1 1 1 1 1 1 1 1 0 1 17 TIGR00964 preprotein translocase, SecE subunit 1 1 1 1 1 1 0 1 0 1 1 1 TIGR00967 preprotein translocase, SecY subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00981 ribosomal protein S12 1 1 1 1 1 1 0 1 1 1 1 1 TIGR01009 ribosomal protein S3 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01011 ribosomal protein S2 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01017 ribosomal protein S4 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01021 ribosomal protein S5 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01024 ribosomal protein L19 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01029 ribosomal protein S7 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01030 ribosomal protein L34 1 0 1 1 1 1 0 1 0 0 1 0 TIGR01031 ribosomal protein L32 1 0 1 1 0 1 1 1 1 1 1 1 TIGR01032 ribosomal protein L20 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01044 ribosomal protein L22 1 1 1 1 1 1 0 1 1 1 1 1 TIGR01049 ribosomal protein S10 1 1 1 1 1 1 0 1 1 1 1 1 TIGR01050 ribosomal protein S19 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01059 DNA gyrase, B subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01063 DNA gyrase, A subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01066 ribosomal protein L13 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01067 ribosomal protein L14 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01071 ribosomal protein L15 1 0 1 1 1 1 1 1 1 1 1 1 TIGR01079 ribosomal protein L24 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01164 ribosomal protein L16 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01169 ribosomal protein L1 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01171 ribosomal protein L2 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01391 DNA primase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01393 elongation factor 4 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01632 ribosomal protein L11 1 1 1 1 1 1 1 1 1 1 1 1 TIGR01953 NusA transcription termination factor 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02012 protein RecA 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02013 TIGR02027 DNA-directed RNA polymerase, beta subunit DNA-directed RNA polymerase, alpha subunit TIGR02191 ribonuclease III 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02350 chaperone protein DnaK 1 1 1 1 1 2 1 1 1 1 1 1 TIGR02386 DNA-directed RNA polymerase, beta' subunit 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02397 DNA polymerase III 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02432 tRNA(Ile)-lysidine synthetase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR02729 Obg family GTPase CgtA 1 1 1 1 1 1 1 1 1 1 1 1 18 TIGR03263 guanylate kinase 1 1 1 1 1 1 1 1 1 1 1 1 TIGR03594 ribosome-associated GTPase EngA 1 1 1 1 1 1 1 1 1 1 1 1 TIGR00409 proline--tRNA ligase 1 1 1 1 1 1 1 1 1 1 1 1 19 Table S3 Properties of the representative enzymes involved in polysaccharide degradation and fermentation in the deltaproteobacterium sp. nov.. The gene sequences were searched against KEGG, CAZy and Conserved domain databases (CDD) using BLAST with e <10-5. Enzyme name Length (AA) KEGG CAZy family Domain Beta-1,4-endoglucanase 355 K01179 - FrvX xylanase/chitin deacetylase 347 K01506 CE4 CE4_SF superfamily Starch phosphorylase 845 K00688 GT35 Alpha amylase 714 - GH57 GH38_57_N_lamB_ydjl_SF Alpha amylase 1559 - GH13 AmyAc_1 Acetate kinase 422 K00925 - Acetate kinase superfamily Alcohol dehydrogenase 345 K13953 - PTZ00354 Alcohol dehydrogenase 334 K00001 - PTZ00354 Domain organization Glycosyltransferase_GTB_type superfamily 20 Table S4 Number of genes involved in carbohydrate metabolism, nitrogen metabolism and sulfur metabolism in 1, deltaproteobacterium sp. nov.; 2, Pelobacter propionicus DSM 2379; 3, Pelobacter carbinolicus DSM 2380; 4, Geoalkalibacter subterraneus Red1; 5, Geobacter bemidjiensis Bem; 6, Geobacter daltonii FRC-32; 7, Geobacter sp. M21; 8, Geobacter uraniireducens Rf4; 9, Geobacter lovleyi SZ; 10, Anaeromyxobacter sp. K; 11, Anaeromyxobacter sp. Fw109-5; 12, Myxococcus xanthus DK 1622; 13, Desulfarculus baarsii DSM 2075; 14, Desulfurivibrio alkaliphilus AHT2; 15, Syntrophobacter fumaroxidans MPOB. The gene annotation was based on the KEGG database. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Glycolysis / Gluconeogenesis 28 27 26 12 23 24 23 24 26 11 10 18 19 11 26 Citrate cycle (TCA cycle) 25 20 20 13 21 22 20 20 19 8 8 24 15 8 15 Pentose phosphate pathway 15 22 16 14 16 7 8 9 15 5 7 23 15 15 15 Pentose and glucuronate interconversions 4 3 2 0 4 5 3 2 5 0 1 6 3 2 2 Fructose and mannose metabolism 14 13 14 6 13 13 12 12 15 6 5 16 13 14 15 Galactose metabolism 3 3 3 0 7 3 7 3 4 5 5 6 3 2 4 Ascorbate and aldarate metabolism 3 3 1 0 2 2 3 1 3 0 0 7 2 0 3 Starch and sucrose metabolism 7 6 6 3 10 7 5 6 5 3 3 15 2 12 10 Amino sugar and nucleotide sugar metabolism 20 18 12 5 19 12 19 11 19 12 13 21 23 15 24 Pyruvate metabolism 22 21 11 4 12 15 15 12 19 6 6 17 23 12 24 Glyoxylate and dicarboxylate metabolism 18 14 12 5 20 12 17 12 15 6 8 16 15 6 14 Propanoate metabolism 19 17 6 4 7 6 7 5 9 7 8 14 14 1 15 Butanoate metabolism 17 16 9 2 12 7 12 8 12 6 6 14 15 3 20 C5-Branched dibasic acid metabolism 7 6 3 1 4 5 2 3 5 0 0 6 6 5 6 Inositol phosphate metabolism 0 5 3 0 5 4 3 3 5 0 0 7 4 4 6 Nitrogen metabolism 3 17 8 7 9 9 11 8 16 6 7 10 11 6 11 Sulfur metabolism 3 5 6 6 7 9 6 6 9 4 5 10 11 9 12 21 Table S5 Number of genes involved in energy metabolism in 1, epsilonproteobacterium sp. nov.; 2, Nitratifractor salsuginis DSM 16511; 3, Sulfurovum sp. NBC37-1; 4, Nitratiruptor sp. SB155-2; 5, Caminibacter mediatlanticus TB-2; 6, Nautilia profundicola AmH; 7, Lebetimonas sp. JS170; 8, Wolinella succinogenes DSM 1740; 9, Helicobactercetorum MIT99-5656; 10, Arcobacter sp. L; 11, Campylobacter coli CVM N29710; 12, Campylobacter coli 15-537360; 13, Sulfurospirillum barnesii SES-3; 14, Sulfuricurvum sp. IFRC-1; 15, Sulfurimonas autotrophica DSM 16294. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Oxidative phosphorylation 42 35 40 40 42 37 40 22 18 41 42 42 42 40 40 Photosynthesis (F-type ATPase) 8 8 8 8 16 8 16 8 8 16 8 8 16 16 16 Carbon fixation pathways in prokaryotes 20 14 20 18 14 16 14 12 6 11 19 17 12 11 11 Methane metabolism 17 18 18 15 14 18 18 12 12 15 17 16 16 17 15 Nitrogen metabolism 39 18 30 30 24 23 18 17 2 17 18 16 13 17 20 Sulfur metabolism 12 8 13 13 4 11 10 3 8 11 10 10 11 12 13 22 Table S6 A summary of all the metagenomes of the biofilm and water communities. The average length of the raw reads is 100bp. Location Brine pool NBW Duration and substrate types 3d-Al 3d-Ti 3d-PVC 6d-Al 6d-Ti 6d-PVC Water 3d-Al 3d-Ti 3d-PVC 6d-Al 6d-Ti 6d-PVC Water No. of raw reads 42,410,000 43,180, 000 32,590, 235 45,034,038 43,045, 105 39,505, 320 43,256,204 21,680,000 23,390, 000 26,046, 780 22,480, 000 22,840, 000 19,221, 704 41,955,586 Trimmed reads 7, 132 7, 601 120, 221 887, 069 234, 721 276, 172 6,750 3, 813 3, 977 220, 629 3, 621 3, 777 62, 991 6,945 Reads assigned to CAZy 2, 995, 329 3, 113, 483 3, 129, 437 3, 145, 173 3, 199, 498 3, 114, 722 2,87,934 1,472, 380 1,555, 587 1,499, 375 1,495, 843 1,477, 342 1,465, 674 1,232,731 Assembled contigs 1, 012, 332 945, 510 N50 of contigs 630 467 Average length of contigs (bp) 588 519 Predicted ORFs 1, 378, 917 1, 026, 605 ORFs could be annotated 868,717 (63%) 657, 027 (64%) ORFs assigned to GOs 482,620 (35.1%) 287, 449 (28%) ORFs assigned to KEGGs 303,361(22%) 318, 247 (31%) 23 Table S7 Primer used in quantitative PCR. Genes Sequences deltaproteobacterium sp. nov. endoglucanase-F TCGAAGGTATCGCTGATA endoglucanase-R ATCATCGACAAACTGCAC acetate kinase-F GCACTAAATTGTGGAAGCTC acetate kinase-R CAACGCCATGGGTATTGTCGG alcohol dehydrogenase-F AGCGCTGCTGGTGGAGCAGCC alcohol dehydrogenase-R TCACTCCTTTATTTCCAACTG Zn-dependent protease-F AGCGGGGTGTTATCAAATCG Zn-dependent protease-R CAACAACAGTCGATCTTCA epsilonproteobacterium sp. nov. narG-F ATGAGTGTAAACGATAATAG narG-R AACCGAACTCGTTTCTATAC narH-F AGAAACGTATCCGGGCAAG narH-R GGGTTTTCCCGTCGGCC napA-F CTGTTGGGATGTCCGTTCC napA-R TGCATTAAAGTAACCTTTG napB-F GACTATCGCTTCTGCCGCG napB-R GTACCCTTTAAGCGCTGC nifD-F GTTTGCAAAAGAGCGCC nifD-R CTCATTACGCCAGGAACG nifH-F ATGCAACAACAGTTGGTG nifH-R GGGTCACACCCGACGATA Acetate:CoA ligase-F AAAGCCGCGATCATCTTCG Acetate:CoA ligase-R AGTGGATCGCGCCGATTCTCG motA-F GGTCTACTGTTAGGTGCGAT motA-R TTAATAAGTTCGTTTACATC 24