Download Wind Energy System With Matrix Converter

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Menoufia University
Faculty of Engineering
Department of Electrical Engineering
Wind Energy System With
Matrix Converter
Kotb B. Tawfiq, A.F. Abdou , E. E. EL- Kholy
Electrical Engineering Department, Faculty of Engineering,
Menoufia University, Shebin El- Kom, Egypt
Presenter: Prof. Elwy Eissa EL-Kholy
[email protected]
[email protected]
Electrical Engineering Department
2
Electrical Engineering Department
3
Contents
• Wind Energy

Wind Energy production in Egypt

Wind Farms in Egypt

Wind Energy production in The World

Types of Wind Turbines & its model
• AC-AC Converters
• Matrix Converter

Structure of Matrix Converter

Control of Matrix Converter
• Conclusion
4
Wind Energy
Advantage of Wind Energy
a. Although wind turbines can be very tall each takes up
only a small plot of land. This means that the land below
can still be used. This is especially the case in
agricultural areas as farming can still continue.
b. Wind generators have been generally utilized in
autonomous systems for feeding remote loads.
c. Absence of harmful emissions.
d. Renewable & Sustainable
e. Environmentally Friendly
f. Low Running Costs
g. Low Maintenance
5
Wind Energy in Egypt
End 1997:
End 1998:
End 1999:
End 2000:
End 2001:
End 2002:
End 2003:
End 2004:
End 2005:
End 2006:
End 2007:
End 2008:
End 2009:
End 2010:
End 2011:
End 2012:
End 2013:
End 2014:
End 2015:
End 2016:
6 MW
6 MW
36 MW (+500 %)
69 MW (+91.7 %)
69 MW (- %)
69 MW (- %)
180 MW (+160.9 %)
145 MW (-19.4 %)
145 MW (- %)
230 MW (+58.7 %)
310 MW (+34.8 %)
390 MW (+25.9 %)
430 MW (+10.3 %)
550 MW (+28 %)
550 MW (- %)
550 MW (- %)
550 MW (- %)
616 MW (+12 %)
810 MW (+31.5 %)
810 MW (- %)
6
Wind Farm in Egypt
Gulf of El-Zayt
200 MW
100 turbines
Zafarana 1
30 MW
50 turbines
Zafarana 2
33 MW
55 turbines
Zafarana 3
30.36MW
46 turbines
Zafarana 4
46.860 MW
71 turbines
Zafarana 5
85 MW
100 turbines
Zafarana 6
79.9 MW
94 turbines
Zafarana 7
119.850 MW
141 turbines
Zafarana 8
119.850 MW
141 turbines
7
Worldwide wind farms file (16,684 wind farms, 386.5 GW)
Country
Albania
Algeria
Argentina
Australia
Austria
Azerbaijan
Belgium
Brazil
Bulgaria
Canada
Chile
China
Costa Rica
Croatia
Cyprus
Czech Republic
Denmark
Dominican Republic
Continent
Europe
Africa
South America
Oceania
Europe
Asia
Europe
South America
Europe
North America
South America
Asia
North America
Europe
Europe
Europe
Europe
North America
Wind farms
1
1
23
60
231
3
143
363
47
262
30
893
14
19
6
71
1,517
4
Capacity (MW)
150
11
584
4,878
2,464
56
2,438
11,854
638
12,576
1,602
66,175
348
466
154
322
5,266
232
8
Worldwide wind farms file (16,684 wind farms, 386.5 GW)
Country
Albania
Algeria
Argentina
Australia
Austria
Azerbaijan
Belgium
Brazil
Bulgaria
Canada
Chile
China
Costa Rica
Croatia
Cyprus
Czech Republic
Denmark
Dominican Republic
Continent
Europe
Africa
South America
Oceania
Europe
Asia
Europe
South America
Europe
North America
South America
Asia
North America
Europe
Europe
Europe
Europe
North America
Wind farms
1
1
23
60
231
3
143
363
47
262
30
893
14
19
6
71
1,517
4
Capacity (MW)
150
11
584
4,878
2,464
56
2,438
11,854
638
12,576
1,602
66,175
348
466
154
322
5,266
232
2nd place in
the world
9
Ecuador
Egypt
Eritrea
Estonia
Ethiopia
Faroe Islands
Fiji
Finland
France
Germany
Greece
Grenada
Guam
Guatemala
Honduras
Hungary
South America
Africa
Africa
Europe
Africa
Europe
Oceania
Europe
Europe
Europe
Europe
North America
Asia
North America
North America
Europe
3
9
1
28
3
4
1
162
951
4,308
147
1
1
2
3
37
26
810
1
310
325
19
11
1,217
11,984
46,262
2,283
2
1
74
156
513
10
Ecuador
Egypt
Eritrea
Estonia
Ethiopia
Faroe Islands
Fiji
Finland
France
Germany
Greece
Grenada
Guam
Guatemala
Honduras
Hungary
South America
Africa
Africa
Europe
Africa
Europe
Oceania
Europe
Europe
Europe
Europe
North America
Asia
North America
North America
Europe
3
9
1
28
3
4
1
162
951
4,308
147
1
1
2
3
37
26
810
1
310
325
19
11
1,217
11,984
46,262
2,283
2
1
74
156
513
11
Ecuador
Egypt
Eritrea
Estonia
Ethiopia
Faroe Islands
Fiji
Finland
France
Germany
Greece
Grenada
Guam
Guatemala
Honduras
Hungary
South America
Africa
Africa
Europe
Africa
Europe
Oceania
Europe
Europe
Europe
Europe
North America
Asia
North America
North America
Europe
3
9
1
28
3
4
1
162
951
4,308
147
1
1
2
3
37
26
810
1
310
325
19
11
1,217
11,984
46,262
2,283
2
1
74
156
513
3rd place in
the world
12
Iceland
India
Iran
Ireland
Israel
Italy
Jamaica
Japan
Jordan
Kazakhstan
Latvia
Libya
Lithuania
Mexico
Mongolia
Montenegro
Morocco
Netherlands
New-Zealand
Europe
Asia
Asia
Europe
Asia
Europe
North America
Asia
Asia
Asia
Europe
Africa
Europe
North America
Asia
Europe
Africa
Europe
Oceania
2
468
11
179
3
359
5
233
4
1
10
1
58
47
5
1
15
481
20
5
18,181
112
2,607
28
9,589
79
2,678
205
46
53
20
380
4,257
51
72
1,092
4,474
692
13
Nigeria
Norway
Pakistan
Panama
Peru
Philippines
Poland
Portugal
Puerto Rico
Romania
Russia
Saudi Arabia
Serbia
Seychelles
Slovakia
Slovenia
South Africa
South Korea
Africa
Europe
Asia
North America
South America
Oceania
Europe
Europe
North America
Europe
Asia
Asia
Europe
Africa
Europe
Europe
Africa
Asia
1
39
6
4
6
9
213
255
3
67
9
1
1
1
3
2
29
48
11
2,091
358
576
241
390
4,047
5,106
126
3,201
50
3
10
6
4
6
2,233
725
14
Spain
Sri Lanka
Sweden
Switzerland
Taiwan
Tanzania
Thailand
Tunisia
Turkey
Ukraine
United Arab
Emirates
United-Kingdom
Uruguay
USA
Vanuatu
Venezuela
Vietnam
Europe
Asia
Europe
Europe
Asia
Africa
Asia
Africa
Asia
Europe
Asia
985
17
865
12
26
1
12
3
153
24
1
23,331
136
5,410
76
625
50
297
243
6,262
635
1
Europe
South America
North America
Oceania
South America
Asia
881
38
1,174
1
2
11
20,845
1,331
87,819
4
126
473
15
Spain
Sri Lanka
Sweden
Switzerland
Taiwan
Tanzania
Thailand
Tunisia
Turkey
Ukraine
United Arab
Emirates
United-Kingdom
Uruguay
USA
Vanuatu
Venezuela
Vietnam
Europe
Asia
Europe
Europe
Asia
Africa
Asia
Africa
Asia
Europe
Asia
985
17
865
12
26
1
12
3
153
24
1
23,331
136
5,410
76
625
50
297
243
6,262
635
1
Europe
South America
North America
Oceania
South America
Asia
881
38
1,174
1
2
11
20,845
1,331
87,819
4
126
473
1st
place in
the world
16
2- WIND ENERGY CONVERSION SYSTEM
- Wind Turbine
1- Horizontal – Axis Wind Turbine
2- Vertical- Axis Wind Turbine
17
2.2.1Horizontal axis type
18
Advantages of HAWTs
a. Variable blade pitch.
b. High efficiency.
c. The tall tower base
10 m
20%
34%
HAWTs disadvantages
a.
b.
c.
d.
Difficult to install.
Massive tower construction is required .
Disrupting of environmental landscape.
Additional control mechanism is required.
19
2.2.2 Vertical axis type
20
VAWTs advantages
a.
b.
c.
d.
e.
Produce less noise.
VAWTs have low maintenance downtime.
Less expensive to build .
Can be installed in more locations – on roofs and
along highways.
Doesn’t require additional control mechanism.
VAWTs disadvantages:
a. VAWTs have lower efficiency compared to HAWTs.
b. Having rotors located close to the ground.
21
2.2.3Wind turbine model
• The output power of the wind turbine.
𝑃𝑚 =
• 𝑐𝑝 𝜆, 𝜃
13.2ቁ 𝑒
1
𝜌𝑐𝑝 𝐴𝑟 𝑣𝑤3
2
151
= 0.73 ቀ
𝜆𝑖
−18.4
(1)
− 0.58𝜃 − 0.002𝜃 2.14 −
𝜆𝑖
(2)
𝜆𝑖 =
1
1
0.003
−
𝜆−0.02𝜃 𝜃3 +1
𝜆=
𝜔𝑟 𝑅𝑟
𝑣𝑤
(3)
(4)
22
3.1 AC-AC CONVERTERS
AC-AC
Converter
Direct
Converter
AC
Voltage
Controller
Indirect
Converter
Frequency
Converter
CycloConverter
Matrix
Converter
23
3.1 AC Voltage Controller
The ac to ac converters employed to vary the
rms value of the voltage across the load at
constant frequency are known as - ac voltage
controllers or ac regulators. The voltage control
is accomplished either by:
• phase control under natural commutation
using pairs of silicon-controlled rectifiers
(SCRs) or triacs;
• on/off control under forced commutation
using fully controlled self-commutated
switches such as Gate Turn-off Thyristors
(GTOs), power transistors, Insulated Gate
Bipolar Transistors (IGBTs), MOS-controlled
Thyristors (MCTs), etc
24
3.2 Cycloconverter
• cycloconverter operates as a direct
AC-AC frequency changer with the
ability to control the rms value of the
load voltage.
• A cycloconverter is a naturally
commuted converter with
bidirectional power flow.
• The main limitations of a naturally
commutated cycloconverter are:
 Limited frequency range for sub
harmonic-free and efficient
operation.
 Poor input displacement power
factor, particularly at low output
voltages.
25
3.3 Matrix Converter
• Control rms value of load voltage and frequency.
• Displacement factor control.
• Simple construction due to lack of the DC link.
26
3.3 Structure of the Matrix Converter
a. Matrix Switches.
b. Input Filter.
c. Clamp Circuit.
a- Matrix Switches
Fig.3.2 configuration of a bi-directional switch
27
AC-Switch
MOSFET
Diode
Isolated gate
supplies
Gate signal
Diode bridge
with single
Switch
9
36
9
9
Common
Collector bidirectional
Switch
18
18
6
18
Common
Emitter bidirectional
switch
18
18
9
18
28
Clamp Circuit & Input Filter
29
3.4 Control of the Matrix Converters
• Indirect space vector control.
Figure 3–8 Indirect three phase matrix converter
30
3.4.1Transformation from Indirect matrix converter
to direct one
𝑉𝐷𝐶 = 𝐸 ∗ 𝑉𝑎𝑏𝑐
𝑉𝐴𝐵𝐶 = 𝑁 ∗ 𝑉𝐷𝐶
𝑉𝐴𝐵𝐶 = N * E ∗ 𝑉𝑎𝑏𝑐
𝑉𝐴𝐵𝐶 = K∗ 𝑉𝑎𝑏𝑐
K=N∗E
𝑆1
𝐸=
𝑆2
𝑆7
𝑆9
𝑆8
𝑆10
𝑆3
𝑆4
𝑆7
𝑁 = 𝑆9
𝑆11
𝑆5
,
𝑆6
𝑆𝑎𝐴
𝐾 = 𝑁 ∗ 𝐸 = 𝑆𝑎𝐵
𝑆𝑎𝐶
𝑆1 𝑆3 𝑆5
(7)
𝑆𝑏𝐴
𝑆𝑏𝐵
𝑆𝑏𝐶
(6)
𝑆8
𝑆10
𝑆12
𝑆𝑐𝐴
𝑆𝑐𝐵 =
𝑆𝑐𝐶
31
𝑆7 𝑆1 + 𝑆8 𝑆2
𝑉𝐴
𝑉𝐵 = 𝑆9 𝑆1 + 𝑆10 𝑆2
𝑉𝐶
𝑆11 𝑆1 + 𝑆12 𝑆2
𝑆7 𝑆3 + 𝑆8 𝑆4
𝑆9 𝑆3 + 𝑆10 𝑆4
𝑆11 𝑆3 + 𝑆12 𝑆4
𝑣𝑎
𝑆7 𝑆5 + 𝑆8 𝑆6
𝑆9 𝑆5 + 𝑆10 𝑆6 ∗ 𝑣𝑏
𝑣𝑐
𝑆11 𝑆5 + 𝑆12 𝑆6
(10)
𝑆𝑎𝐴
Figure 3–9 Transformation from Indirect matrix converter to Direct one in phase a
32
3.4.2 Space Vector of The Inverter
Fig.3-10 Hexagon of inverter
voltage
Fig.3-11 Composition of reference
33
output voltage
• 𝑉𝑜∗ = 𝑑𝛼 𝑉𝛼 + 𝑑𝛽 𝑉𝛽 + 𝑑𝑧 𝑉𝑧
• 𝑑𝛼 =
𝑇𝛼
𝑇𝑠
• 𝑑𝛽 =
𝑇𝛽
• 𝑑𝑧 =
𝑇𝑧
𝑇𝑠
𝑇𝑠
= 𝑚𝑣 . sin
𝜋
3
− 𝜃𝑣
(11)
(12)
= 𝑚𝑣 . sin 𝜃𝑣
(13)
= 1 − ( 𝑑𝛼 + 𝑑𝛽 )
(14)
34
3.4.3 Space Vector of Rectifier
Fig. (3-12)Hexagon of rectifier current
Fig. (3-13)composition of input current
35
vector
∗
• 𝐼𝐼𝑁
= 𝑑𝛾 𝐼𝛾 + 𝑑𝛿 𝐼𝛿 + 𝑑𝑜𝑐 𝐼0
• 𝑑𝛾 = 𝑚𝑐 . sin
𝜋
3
− 𝜃𝑐
• 𝑑𝛿 = 𝑚𝑐 . sin 𝜃𝑐
• 𝑑0𝑐 = 1 − ( 𝑑𝛾 + 𝑑𝛿 )
(16)
(17)
(18)
(19)
• Where, 𝜃𝑐 represent the angle of the reference
input current vector within the sector of the
hexagon. The 𝑚𝑐 is the current modulation
index and define such as;
• 𝑚𝑐 =
∗
𝐼𝐼𝑁
𝐼𝐷𝐶
(20)
36
4.4 Symmetric Sequence Algorithm
4.4.1 Introduction
4.4.2 Conventional Symmetric Sequence Algorithm
The sequence in this method is 𝑉𝑧 − 𝑉𝛼 − 𝑉𝛽 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 37𝑉𝑧
3.5 Modified Symmetric Sequence Algorithm
• the duty cycle of 𝑉𝛼 ( 𝑑𝛼 ) is divided to four equal periods,
𝑑𝑧 𝑑𝑧 𝑑𝑧 𝑑𝑧
𝑑𝑧
𝑑𝛽 𝑎𝑙𝑠𝑜 𝑎𝑛𝑑 𝑑𝑧 is divided to five periods , , , 𝑎𝑛𝑑 .
4 4 4 8
8
• The sequence in the proposed algorithm is as follow 𝑉𝑧 − 𝑉𝛼 −
𝑉𝛽 − 𝑉𝑧 −𝑉𝛼 − 𝑉𝛽 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 𝑉𝑧 .
38
method
THD of output
voltage %
Conventional
37.91
symmetric sequence
Modified symmetric
18.88
sequence
39
Control of Load Voltage
a- Vo 25 Hz , q=0.8
c- Zoomed Vo 25 Hz , q=0.8
b- Vo 25 Hz , q=0.4
40
d- Zoomed Vo 25 Hz , q=0.4
VA , Va [V]
Control of Load Voltage
VA
Va
200
0
-200
17.02
17.04
17.06
17.08
time [sec]
17.1
17.12
17.14
VA , Va [V]
(a) Input voltage 𝑽𝒂 50 Hz, output voltage 𝑽𝑨 12.5 Hz
200
VA
Va
100
0
-100
-200
17.41
17.42
17.43
17.44
time[sec]
17.45
17.46
(b) Input voltage 𝑽𝒂 50 Hz, output voltage 𝑽𝑨 200 Hz
41
5.2 Open Loop Control of Matrix Converter
𝑽𝑰𝑵
100
50
Open Loop
Control
q
𝑽𝒐𝒖𝒕
0.4
40
0.4
20
Modified open Loop
Control
q
𝑽𝒐𝒖𝒕
0.4
40
0.8
40
42
5- CONCLUSION
1. Wind Energy production& wind farms in Egypt are
introduced
2. Wind energy production in the world is introduced
3. Types of wind turbines are introduced
4. Classification of AC-AC Converters are introduced
5. Structure and control algorithm of matrix converter are
introduced
6. symmetric sequence algorithm for space vector modulation
was introduced which reduce the THD of the output voltage.
7. open loop control of the indirect space vector modulation
was proposed which give constant output voltage at
different wind speeds.
43
44
Related documents