Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Menoufia University Faculty of Engineering Department of Electrical Engineering Wind Energy System With Matrix Converter Kotb B. Tawfiq, A.F. Abdou , E. E. EL- Kholy Electrical Engineering Department, Faculty of Engineering, Menoufia University, Shebin El- Kom, Egypt Presenter: Prof. Elwy Eissa EL-Kholy [email protected] [email protected] Electrical Engineering Department 2 Electrical Engineering Department 3 Contents • Wind Energy Wind Energy production in Egypt Wind Farms in Egypt Wind Energy production in The World Types of Wind Turbines & its model • AC-AC Converters • Matrix Converter Structure of Matrix Converter Control of Matrix Converter • Conclusion 4 Wind Energy Advantage of Wind Energy a. Although wind turbines can be very tall each takes up only a small plot of land. This means that the land below can still be used. This is especially the case in agricultural areas as farming can still continue. b. Wind generators have been generally utilized in autonomous systems for feeding remote loads. c. Absence of harmful emissions. d. Renewable & Sustainable e. Environmentally Friendly f. Low Running Costs g. Low Maintenance 5 Wind Energy in Egypt End 1997: End 1998: End 1999: End 2000: End 2001: End 2002: End 2003: End 2004: End 2005: End 2006: End 2007: End 2008: End 2009: End 2010: End 2011: End 2012: End 2013: End 2014: End 2015: End 2016: 6 MW 6 MW 36 MW (+500 %) 69 MW (+91.7 %) 69 MW (- %) 69 MW (- %) 180 MW (+160.9 %) 145 MW (-19.4 %) 145 MW (- %) 230 MW (+58.7 %) 310 MW (+34.8 %) 390 MW (+25.9 %) 430 MW (+10.3 %) 550 MW (+28 %) 550 MW (- %) 550 MW (- %) 550 MW (- %) 616 MW (+12 %) 810 MW (+31.5 %) 810 MW (- %) 6 Wind Farm in Egypt Gulf of El-Zayt 200 MW 100 turbines Zafarana 1 30 MW 50 turbines Zafarana 2 33 MW 55 turbines Zafarana 3 30.36MW 46 turbines Zafarana 4 46.860 MW 71 turbines Zafarana 5 85 MW 100 turbines Zafarana 6 79.9 MW 94 turbines Zafarana 7 119.850 MW 141 turbines Zafarana 8 119.850 MW 141 turbines 7 Worldwide wind farms file (16,684 wind farms, 386.5 GW) Country Albania Algeria Argentina Australia Austria Azerbaijan Belgium Brazil Bulgaria Canada Chile China Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Continent Europe Africa South America Oceania Europe Asia Europe South America Europe North America South America Asia North America Europe Europe Europe Europe North America Wind farms 1 1 23 60 231 3 143 363 47 262 30 893 14 19 6 71 1,517 4 Capacity (MW) 150 11 584 4,878 2,464 56 2,438 11,854 638 12,576 1,602 66,175 348 466 154 322 5,266 232 8 Worldwide wind farms file (16,684 wind farms, 386.5 GW) Country Albania Algeria Argentina Australia Austria Azerbaijan Belgium Brazil Bulgaria Canada Chile China Costa Rica Croatia Cyprus Czech Republic Denmark Dominican Republic Continent Europe Africa South America Oceania Europe Asia Europe South America Europe North America South America Asia North America Europe Europe Europe Europe North America Wind farms 1 1 23 60 231 3 143 363 47 262 30 893 14 19 6 71 1,517 4 Capacity (MW) 150 11 584 4,878 2,464 56 2,438 11,854 638 12,576 1,602 66,175 348 466 154 322 5,266 232 2nd place in the world 9 Ecuador Egypt Eritrea Estonia Ethiopia Faroe Islands Fiji Finland France Germany Greece Grenada Guam Guatemala Honduras Hungary South America Africa Africa Europe Africa Europe Oceania Europe Europe Europe Europe North America Asia North America North America Europe 3 9 1 28 3 4 1 162 951 4,308 147 1 1 2 3 37 26 810 1 310 325 19 11 1,217 11,984 46,262 2,283 2 1 74 156 513 10 Ecuador Egypt Eritrea Estonia Ethiopia Faroe Islands Fiji Finland France Germany Greece Grenada Guam Guatemala Honduras Hungary South America Africa Africa Europe Africa Europe Oceania Europe Europe Europe Europe North America Asia North America North America Europe 3 9 1 28 3 4 1 162 951 4,308 147 1 1 2 3 37 26 810 1 310 325 19 11 1,217 11,984 46,262 2,283 2 1 74 156 513 11 Ecuador Egypt Eritrea Estonia Ethiopia Faroe Islands Fiji Finland France Germany Greece Grenada Guam Guatemala Honduras Hungary South America Africa Africa Europe Africa Europe Oceania Europe Europe Europe Europe North America Asia North America North America Europe 3 9 1 28 3 4 1 162 951 4,308 147 1 1 2 3 37 26 810 1 310 325 19 11 1,217 11,984 46,262 2,283 2 1 74 156 513 3rd place in the world 12 Iceland India Iran Ireland Israel Italy Jamaica Japan Jordan Kazakhstan Latvia Libya Lithuania Mexico Mongolia Montenegro Morocco Netherlands New-Zealand Europe Asia Asia Europe Asia Europe North America Asia Asia Asia Europe Africa Europe North America Asia Europe Africa Europe Oceania 2 468 11 179 3 359 5 233 4 1 10 1 58 47 5 1 15 481 20 5 18,181 112 2,607 28 9,589 79 2,678 205 46 53 20 380 4,257 51 72 1,092 4,474 692 13 Nigeria Norway Pakistan Panama Peru Philippines Poland Portugal Puerto Rico Romania Russia Saudi Arabia Serbia Seychelles Slovakia Slovenia South Africa South Korea Africa Europe Asia North America South America Oceania Europe Europe North America Europe Asia Asia Europe Africa Europe Europe Africa Asia 1 39 6 4 6 9 213 255 3 67 9 1 1 1 3 2 29 48 11 2,091 358 576 241 390 4,047 5,106 126 3,201 50 3 10 6 4 6 2,233 725 14 Spain Sri Lanka Sweden Switzerland Taiwan Tanzania Thailand Tunisia Turkey Ukraine United Arab Emirates United-Kingdom Uruguay USA Vanuatu Venezuela Vietnam Europe Asia Europe Europe Asia Africa Asia Africa Asia Europe Asia 985 17 865 12 26 1 12 3 153 24 1 23,331 136 5,410 76 625 50 297 243 6,262 635 1 Europe South America North America Oceania South America Asia 881 38 1,174 1 2 11 20,845 1,331 87,819 4 126 473 15 Spain Sri Lanka Sweden Switzerland Taiwan Tanzania Thailand Tunisia Turkey Ukraine United Arab Emirates United-Kingdom Uruguay USA Vanuatu Venezuela Vietnam Europe Asia Europe Europe Asia Africa Asia Africa Asia Europe Asia 985 17 865 12 26 1 12 3 153 24 1 23,331 136 5,410 76 625 50 297 243 6,262 635 1 Europe South America North America Oceania South America Asia 881 38 1,174 1 2 11 20,845 1,331 87,819 4 126 473 1st place in the world 16 2- WIND ENERGY CONVERSION SYSTEM - Wind Turbine 1- Horizontal – Axis Wind Turbine 2- Vertical- Axis Wind Turbine 17 2.2.1Horizontal axis type 18 Advantages of HAWTs a. Variable blade pitch. b. High efficiency. c. The tall tower base 10 m 20% 34% HAWTs disadvantages a. b. c. d. Difficult to install. Massive tower construction is required . Disrupting of environmental landscape. Additional control mechanism is required. 19 2.2.2 Vertical axis type 20 VAWTs advantages a. b. c. d. e. Produce less noise. VAWTs have low maintenance downtime. Less expensive to build . Can be installed in more locations – on roofs and along highways. Doesn’t require additional control mechanism. VAWTs disadvantages: a. VAWTs have lower efficiency compared to HAWTs. b. Having rotors located close to the ground. 21 2.2.3Wind turbine model • The output power of the wind turbine. 𝑃𝑚 = • 𝑐𝑝 𝜆, 𝜃 13.2ቁ 𝑒 1 𝜌𝑐𝑝 𝐴𝑟 𝑣𝑤3 2 151 = 0.73 ቀ 𝜆𝑖 −18.4 (1) − 0.58𝜃 − 0.002𝜃 2.14 − 𝜆𝑖 (2) 𝜆𝑖 = 1 1 0.003 − 𝜆−0.02𝜃 𝜃3 +1 𝜆= 𝜔𝑟 𝑅𝑟 𝑣𝑤 (3) (4) 22 3.1 AC-AC CONVERTERS AC-AC Converter Direct Converter AC Voltage Controller Indirect Converter Frequency Converter CycloConverter Matrix Converter 23 3.1 AC Voltage Controller The ac to ac converters employed to vary the rms value of the voltage across the load at constant frequency are known as - ac voltage controllers or ac regulators. The voltage control is accomplished either by: • phase control under natural commutation using pairs of silicon-controlled rectifiers (SCRs) or triacs; • on/off control under forced commutation using fully controlled self-commutated switches such as Gate Turn-off Thyristors (GTOs), power transistors, Insulated Gate Bipolar Transistors (IGBTs), MOS-controlled Thyristors (MCTs), etc 24 3.2 Cycloconverter • cycloconverter operates as a direct AC-AC frequency changer with the ability to control the rms value of the load voltage. • A cycloconverter is a naturally commuted converter with bidirectional power flow. • The main limitations of a naturally commutated cycloconverter are: Limited frequency range for sub harmonic-free and efficient operation. Poor input displacement power factor, particularly at low output voltages. 25 3.3 Matrix Converter • Control rms value of load voltage and frequency. • Displacement factor control. • Simple construction due to lack of the DC link. 26 3.3 Structure of the Matrix Converter a. Matrix Switches. b. Input Filter. c. Clamp Circuit. a- Matrix Switches Fig.3.2 configuration of a bi-directional switch 27 AC-Switch MOSFET Diode Isolated gate supplies Gate signal Diode bridge with single Switch 9 36 9 9 Common Collector bidirectional Switch 18 18 6 18 Common Emitter bidirectional switch 18 18 9 18 28 Clamp Circuit & Input Filter 29 3.4 Control of the Matrix Converters • Indirect space vector control. Figure 3–8 Indirect three phase matrix converter 30 3.4.1Transformation from Indirect matrix converter to direct one 𝑉𝐷𝐶 = 𝐸 ∗ 𝑉𝑎𝑏𝑐 𝑉𝐴𝐵𝐶 = 𝑁 ∗ 𝑉𝐷𝐶 𝑉𝐴𝐵𝐶 = N * E ∗ 𝑉𝑎𝑏𝑐 𝑉𝐴𝐵𝐶 = K∗ 𝑉𝑎𝑏𝑐 K=N∗E 𝑆1 𝐸= 𝑆2 𝑆7 𝑆9 𝑆8 𝑆10 𝑆3 𝑆4 𝑆7 𝑁 = 𝑆9 𝑆11 𝑆5 , 𝑆6 𝑆𝑎𝐴 𝐾 = 𝑁 ∗ 𝐸 = 𝑆𝑎𝐵 𝑆𝑎𝐶 𝑆1 𝑆3 𝑆5 (7) 𝑆𝑏𝐴 𝑆𝑏𝐵 𝑆𝑏𝐶 (6) 𝑆8 𝑆10 𝑆12 𝑆𝑐𝐴 𝑆𝑐𝐵 = 𝑆𝑐𝐶 31 𝑆7 𝑆1 + 𝑆8 𝑆2 𝑉𝐴 𝑉𝐵 = 𝑆9 𝑆1 + 𝑆10 𝑆2 𝑉𝐶 𝑆11 𝑆1 + 𝑆12 𝑆2 𝑆7 𝑆3 + 𝑆8 𝑆4 𝑆9 𝑆3 + 𝑆10 𝑆4 𝑆11 𝑆3 + 𝑆12 𝑆4 𝑣𝑎 𝑆7 𝑆5 + 𝑆8 𝑆6 𝑆9 𝑆5 + 𝑆10 𝑆6 ∗ 𝑣𝑏 𝑣𝑐 𝑆11 𝑆5 + 𝑆12 𝑆6 (10) 𝑆𝑎𝐴 Figure 3–9 Transformation from Indirect matrix converter to Direct one in phase a 32 3.4.2 Space Vector of The Inverter Fig.3-10 Hexagon of inverter voltage Fig.3-11 Composition of reference 33 output voltage • 𝑉𝑜∗ = 𝑑𝛼 𝑉𝛼 + 𝑑𝛽 𝑉𝛽 + 𝑑𝑧 𝑉𝑧 • 𝑑𝛼 = 𝑇𝛼 𝑇𝑠 • 𝑑𝛽 = 𝑇𝛽 • 𝑑𝑧 = 𝑇𝑧 𝑇𝑠 𝑇𝑠 = 𝑚𝑣 . sin 𝜋 3 − 𝜃𝑣 (11) (12) = 𝑚𝑣 . sin 𝜃𝑣 (13) = 1 − ( 𝑑𝛼 + 𝑑𝛽 ) (14) 34 3.4.3 Space Vector of Rectifier Fig. (3-12)Hexagon of rectifier current Fig. (3-13)composition of input current 35 vector ∗ • 𝐼𝐼𝑁 = 𝑑𝛾 𝐼𝛾 + 𝑑𝛿 𝐼𝛿 + 𝑑𝑜𝑐 𝐼0 • 𝑑𝛾 = 𝑚𝑐 . sin 𝜋 3 − 𝜃𝑐 • 𝑑𝛿 = 𝑚𝑐 . sin 𝜃𝑐 • 𝑑0𝑐 = 1 − ( 𝑑𝛾 + 𝑑𝛿 ) (16) (17) (18) (19) • Where, 𝜃𝑐 represent the angle of the reference input current vector within the sector of the hexagon. The 𝑚𝑐 is the current modulation index and define such as; • 𝑚𝑐 = ∗ 𝐼𝐼𝑁 𝐼𝐷𝐶 (20) 36 4.4 Symmetric Sequence Algorithm 4.4.1 Introduction 4.4.2 Conventional Symmetric Sequence Algorithm The sequence in this method is 𝑉𝑧 − 𝑉𝛼 − 𝑉𝛽 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 37𝑉𝑧 3.5 Modified Symmetric Sequence Algorithm • the duty cycle of 𝑉𝛼 ( 𝑑𝛼 ) is divided to four equal periods, 𝑑𝑧 𝑑𝑧 𝑑𝑧 𝑑𝑧 𝑑𝑧 𝑑𝛽 𝑎𝑙𝑠𝑜 𝑎𝑛𝑑 𝑑𝑧 is divided to five periods , , , 𝑎𝑛𝑑 . 4 4 4 8 8 • The sequence in the proposed algorithm is as follow 𝑉𝑧 − 𝑉𝛼 − 𝑉𝛽 − 𝑉𝑧 −𝑉𝛼 − 𝑉𝛽 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 𝑉𝑧 −𝑉𝛽 − 𝑉𝛼 − 𝑉𝑧 . 38 method THD of output voltage % Conventional 37.91 symmetric sequence Modified symmetric 18.88 sequence 39 Control of Load Voltage a- Vo 25 Hz , q=0.8 c- Zoomed Vo 25 Hz , q=0.8 b- Vo 25 Hz , q=0.4 40 d- Zoomed Vo 25 Hz , q=0.4 VA , Va [V] Control of Load Voltage VA Va 200 0 -200 17.02 17.04 17.06 17.08 time [sec] 17.1 17.12 17.14 VA , Va [V] (a) Input voltage 𝑽𝒂 50 Hz, output voltage 𝑽𝑨 12.5 Hz 200 VA Va 100 0 -100 -200 17.41 17.42 17.43 17.44 time[sec] 17.45 17.46 (b) Input voltage 𝑽𝒂 50 Hz, output voltage 𝑽𝑨 200 Hz 41 5.2 Open Loop Control of Matrix Converter 𝑽𝑰𝑵 100 50 Open Loop Control q 𝑽𝒐𝒖𝒕 0.4 40 0.4 20 Modified open Loop Control q 𝑽𝒐𝒖𝒕 0.4 40 0.8 40 42 5- CONCLUSION 1. Wind Energy production& wind farms in Egypt are introduced 2. Wind energy production in the world is introduced 3. Types of wind turbines are introduced 4. Classification of AC-AC Converters are introduced 5. Structure and control algorithm of matrix converter are introduced 6. symmetric sequence algorithm for space vector modulation was introduced which reduce the THD of the output voltage. 7. open loop control of the indirect space vector modulation was proposed which give constant output voltage at different wind speeds. 43 44