Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
INSTITUT RUĐER BOŠKOVIĆ The 2nd International Symposium “Vera Johanides” Molecular study of dominant soil bacteria: streptomycetes in nature and application to biotechnology Duška Vujaklija Laboratory for Molecular Genetics Zagreb, May 10, 2013 Actinobacteria - one of the major communities of the microbial population present in soil responsible for the peculiar soil - smell after rain • inhabit a wide range of environmental niches; soil, freshwater, marine sediments • Gram-positive bacteria • produce a number of enzymes that help degrade organic plant material, lignin, and chitin… •the best known known as secondary metabolite producers; Streptomyces as antibiotic producers Most Actinobacteria of medical significance belong to order of Actinomycetales F. Marinelli: isolation of novel species A. Mikoč: cave Tounjčica Antibiotics A. Mikoč: isolation of novel species Other Total Actinomycetes* 7900 1220 9120 Other bacteria 1400 240 1640 Fungi 2600 1540 4140 Total 11,900 3000 14,900 *70% from Streptomyces Courtesy of D.A. Hopwood Model systems The best studied model system Antibiotic producer S. rimosus colonies (Zagreb group) from liquid media S. coelicolor Sporulating colonies (Courtesy of D. Hopwood) Genetic adaptability to a wide range of environments is evident in the genome of S. coelicolor LH arm = 1.5 Mb RH arm = 2.3 Mb Core = 4.9 Mb 7825 ORFs (55 pseudogenes) 63 tRNA genes 6 rRNA operons 72.12% G+C Complex life cycle S. coelicolor Spores Sporulating colonies whiE sigF whiD bldA,B,C,D,G,H,I,K... whiI whiH Spore formation Spiral aerial hyphae whiA whiB whiG whiJ Substrate mycelium phylum Actinobacteria order Actinomycetales family Streptomycetaceae Reproductive stage of S. coelicolor growth repoductive stage Elliot MA et al. Multicellular Development in Streptomyces Courtesy of D.Hopwood Molecular study of streptomycetes: Implication of SSB in chromosome segregation SSB http://www.pdbj.org/eprots/index_en.cgi?PDB%3A3BEP  S coelicolor possesses two ssb genes DEPPF SSB-A SSBs- primary structures SSB-B OB fold  What is the biological role of SSBs ? C-tail “knock out” eksperiments ssbA is essential ssbB exibits Whi phenotype Tina Paradzik, et al. Structure-function relationships of two paralogous single-stranded DNA binding proteins from Streptomyces coelicolor: implication of SSB-B in chromosome segregation during sporulation Nucleic Acids Res. 2013. ssbB mutant has defect in chromosome segregation ▪ Abberant distribution od chromosome in ssbB mutant , 30% of spores lacked DNA(n=2200) ▪ Statistical analyses of spore length and number in S. coelicolor M145 and ssbB mutant showes slightly increased spore length and number of spores in spore chain ssbB Expression profiles of ssb genes Manteca A et al. J. Proteome Res. 2011 A C 1 18h 18h 24h 48h 96h - 18h 24h 48h 96h - 2 24h 48h 96h - 18h 1 1 2 2 3 3 24h 48h 96h - 16s -RT 16s -RT B 18h 24h 48h 96h - RM MM T. Paradzik, et al. Nucleic Acids Res. 2013. Promoter regions of two ssb genes ▪Two transcription start of ssbA gene is75 bp and 163 bp upstream of rpsF gene the transcription start of ssbB gene to be 73 bp upstream of start codon ▪Promoter region of ssbB (79 % GC, a palindromic sequence, DnaA box two long imperfect direct repeats) Binding of SSB proteins to ФX174 DNA (EMSA) - NaCl 100 mM NaCl Tryptophane fluorescent quenching of SSB-A (1) and SSB-B (2) while binding to (dT)35 Stefanic et al (2009) Acta Crystallogr D Biol Crystallogr. 2009 T. Paradzik, et al. Nucleic Acids Res. 2013. Detection of disulphide bonds in SsbB (A) S. coelicolor SsbB isolated from E. coli . (B) Western blot analysis: SsbB isolated from S. coelicolor (C) Binding of SSB proteins to ФX174 DNA in a presence of DTT SSB-B OB fold TSB01 TSB03 M145 TSB02 C-tail Fluorescence microscopy after in vivo staining by DAPI (A) the strain lacking ssbB (TSB01) or (C) only C-terminus of ssbB (ssbB∆C ,TSB03), (B) M145, wild type strain, and (D) TSB02, ssbB mutant complemented with ssbB. Cell processes during sporulation; role of SSB-B? FtsZ DivIVA ParB ParA FtsK A - Arial hyphae grow by tip extension; FtsZ helical filaments which are remodelled into Z rings After septation, MreB localizes to closing septa and spread around developing spore. B- Chromosome segregation, ParA / ParB binds near oriC, its distribution is driven by ParA. Collaboration with D. Jakimowicz from Wroclav, Poland started. Flardth K and Buttner M, Nature Reviews/Microbiology 2009 Streptomyces: still represent an excellent source for genome mining John Innes Center Some Genes that Adapt for Life in the Soil Sigma (ECF) 2-comp sensor Ser/Thr PK ABC transporter Secreted hydrolase Chitinase, cellulase S. coel. 65 (45) 85 44 141 135 M. tub. 14 (11) 11 13 32 22 B. subt. 17 (7) 34 8 77 21 E. coli 7 (2) 32 8 80 9 12 1 1 0 Courtesy of D.A. Hopwood Lipolytic activity of various Streptomyces isolated from soil Number of retrieved sequences 17 16 15 14 13 A.Mikoč tricaprylin/TSB medium 12 11 Genome mining organism lipase esterase Streptomyces coelicolor 20 55 Streptomyces avermitilis 29 76 Streptomyces griseus 12 39 Streptomyces scabies 22 69 10 9 8 7 GDSL lipolytic family 6 3 2 1 Species/strain of genus Streptomyces S. clavuligerus ATCC 27064 S. scabiei 87.22 S. hygroscopicus ATCC 53653 S. violaceusniger Tu 4113 S. roseosporus S. sp. AA4 S. ghanaensis ATCC 14672 S. pristinaespiralis ATCC 25486 S. albus J1074 S. avermitilis MA-4680 S. viridochromogenes DSM 40736 S. sp. ACTE S. sp. C S. flavogriseus ATCC 33331 S. sviceus ATCC 29083 S. bingchenggensis BCW-1 S. griseoflavus Tu4000 S. griseus subsp. griseus NBRC 13350 S. sp. ACT-1 S. sp. Mg1 S. sp. SPB78 S. sp. SA3_actG S. coelicolor A3(2) S. lividans TK24 S. sp. e14 S. sp. SPB74 S. sp. SA3_actF S. ambofaciens ATCC 23877 S. rochei S. diastatochromogenes S. fradiae S. rimosus R6 ► Multifunctionality ► Activity and Stability (Temp., pH, and organic solvents) ► Potential for application in biotechnology/bioremediation EC number Activity 2.3.1.43 phosphatidylcholine:sterol Oacyltransferase 3.1.1.1 esterase 3.1.1.2 arilesterase 3.1.1.3 lipase 3.1.1.4 phospholipase A(2) 3.1.1.5 lysophospholipase 3.1.1.6 acetylesterase 3.1.1.47 1-alkyl-2acetylglycerophosphocholine esterase 3.1.1.53 sialate O-acetylesterase 3.1.1.72 acetylxylan esterase 3.1.1.77 acyloxyacyl hydrolase 3.1.2.2 palmitoyl-CoA hydrolase Prediction of SrL 3D structure • Abramić et al, Enzyme Microb Technol, 1999 • Vujaklija et al, Arch Microbiol , 2002 • Vujaklija et al, Food Technol Biotechnol, 2003 • Leščić et al, Biological Chemistry, 2004 • Zehl et al, J Mass Spectrom, 2004 • Leščić Ašler et al, BBA, 2006 • Bielen et al, Biochimie, 2009 0,14% 0,12% 0,10% 0,08% 0,06% 0,04% 0,02% Viridiplantae Fungi Eumetazoa Eukaryota Actinobacteria Bacteria 0,00% Archaea Taxonomic distribution... Proportion of SGNH hydrolases in UniProtKB database (%) GDSL lipolytic enzymes are abundant in Actinobacteria Taxonomic groups Scanning for genes encoding GDS(L) hydrolases in Actinobacteria from wide diversity of ecological niches Ana Bielen The 2nd International Symposium “VERA JOHANIDES”, 2013 Zagreb, May 11, 10,40 am Metagenomics • IDENTIFICATION PCR • Sampling and DNA isolation • 16S rRNA analysis • Sequencing, TRLFP analysis, CLONE cloning of PCR products IDENTIFI • Phylogenetic analysis CATION Tina Paradžik, Želimira Filić i Ana Bielen Nives Ivic Meri Luic & Zoran Stefanic Babu A. Manjasetty EMBL, Grenoble Marija Abramić J.Pigac Adris Group - donation Ivo Piantanida, IRB CIM-IRB Senka Džidić Christine Cagnon, Robert Duran Bojan Hamer Paul Herron University of Strathclyde, Glasgow Emina Durmiši Pau University