Download 3rd 9 Weeks Interim Checklist Review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3rd 9 Weeks Interim Checklist Review- Accelerated
This is a list of skills you should have after nine weeks of accelerated math. You might find these on any test from
this point forward, so use the checklist to study for the 9 week interim and any other tests that come up. This
checklist only lists the basics for each topic. Be sure to study any notes, handouts, or activities from class that go
with each item on the checklist.
I. Vocabulary – Know the meaning of the word and how it is used in a problem.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
Distance Formula – Pg 193
Midpoint – Pg 193
Midpoint Formula – Pg 193
Conditional Statement –
Pg 204
If-then form – Pg 204
Hypothesis – Pg 204
Conclusion – Pg 204
Converse – Pg 204
Inverse – Pg 204
Contrapositive – Pg 204
Equivalent Statement – Pg 204
Perpendicular Lines – Pg 204
Biconditional Statement – Pg 204
Conjecture – Pg 197
Inductive Reasoning – Pg 197
Counterexample – Pg 197
Deductive Reasoning – Pg 211
Law of Detachment – Pg 211
Law of Syllogism – Pg 211
Proof – Pg 217
Two-column proof – Pg 217
Postulate – Pg 217
Segment Addition Postulate – Pg
217
Angle Addition Postulate – Pg 217
Theorem – Pg 217
Adjacent angles – Pg 223
Linear pair – Pg 223
Right Angle Congruence Thm. – Pg
223
Congruent Supplements Thm. – Pg
223
Congruent Complements Thm. – Pg
233
Angle Addition Postulate – Pg 217
Theorem – Pg 217
Adjacent angles – Pg 223
Linear pair – Pg 223
Right Angle Congruence Thm. – Pg
223
Congruent Supplements Thm. – Pg
223
Congruent Complements Thm. – Pg
223
Linear Pair Postulate – Pg 223
Vertical Angles Congruence Thm. –
Pg 223
Distance from a point to a line – Pg
229
41. Transversal – Pg 229
42. Perpendicular Thm. of intersecting lines – Pg
229
43. Angle Addition Postulate – Pg 217
44. Theorem – Pg 217
45. Adjacent angles – Pg 223
46. Linear pair – Pg 223
47. Right Angle Congruence Thm. – Pg 223
48. Congruent Supplements Thm. – Pg 223
49. Congruent Complements Thm. – Pg 223
50. Linear Pair Postulate – Pg 223
51. Vertical Angles Congruence Thm. – Pg 223
52. Distance from a point to a line – Pg 229
53. Transversal – Pg 229
54. Perpendicular Thm. of intersecting lines – Pg
229
55. Right angle Thm. of perpendicular lines – Pg
229
56. Perpendicular Transversal Thm. – Pg 229
57. Lines Perpendicular to a Transversal Thm. –
Pg 229
58. Congruent Figures – Pg 236
59. Corresponding parts – Pg 236
60. Coordinate Proof – Pg 236
61. Side-Side-Side Congruence Postulate – Pg
236
62. Legs – Pg 242
63. Hypotenuse – Pg 242
64. Side-Angle-Side Congruence Postulate – Pg
242
65. Hypotenuse-Leg Congruence Thm. – Pg 242
66. Flow proof – Pg 249
67. Angle-side-angle Congruence Postulate – Pg
249
68. Angle-angle-side Congruence Postulate – Pg.
249
69. Side-Side-Side Congruence Postulate – Pg
236
70. Legs – Pg 242
71. Hypotenuse – Pg 242
72. Side-Angle-Side Congruence Postulate – Pg
242
73. Hypotenuse-Leg Congruence Thm. – Pg 242
74. Flow proof – Pg 249
75. Angle-side-angle Congruence Postulate – Pg
249
76. Angle-angle-side Congruence Postulate – Pg.
249
77. Midsegment of a triangle – Pg 258
78. Midsegment Thm. – Pg 258
79. Perpendicular Bisector – Pg 264
80. Equidistant – Pg 264
81. Perpendicular Bisector Thm – Pg
264
82. Converse Perpendicular Bisector
Thm – Pg 264
83. Concurrent – Pg 264
84. Point of concurrency – Pg 264
85. Concurrency of Perpendicular
Bisectors of a Triangle – pg 264
86. Circumcenter – Pg 264
87. Angle Bisector – Pg 272
88. Angle Bisector Thm – Pg 272
89. Converse Angle Bisector thm – Pg
272
90. Concurrency of angle bisectors of a
Triangle – Pg 272
91. Incenter – Pg 272
92. Median of a Triangle – Pg 278
93. Altitude of a Triangle – Pg 278
94. Orthocenter – Pg 278
95. Concurrency of Medicans of a
Triangle – Pg 278
96. Concurrency of Altitudes of a
Triangle
97. Triangle Inequality Thm – Pg 284
98. Exterior Angle Inequality Thm. – Pg
284
99. Hinge Thm – Pg 284
100. Converse Hinge Thm – Pg 284
101. Indirect proof – Pg 284
102. Diagonal – Pg 298
103. Polygon Interior Angles Thm – Pg
298
104. Interior Angles of Quadrilateral –
Pg 298
105. Polygon Exterior Angles Thm – Pg
298
106. Interior angles of a polygon – Pg
298
107. Exterior angles of a polygon – pg
298
108. Rhombus – Pg 316
109. Rectangle – Pg 316
110. Square – Pg 316
111. Trapezoid – Pg 323
112. Bases – Pg 323
113. Base angles – Pg 323
114. Legs – Pg 323
115. Isosceles Trapezoid – Pg 323
116. Midsegment Thm for Trapezoid –
Pg 323
II. Geometry: Reasoning and Proof, Lines, and Congruent Triangles
a. Apply the Distance and Midpoint Formulas
b. Use Inductive Reasoning
c. Analyze Conditional Statements
d. Apply Deductive Reasoning
e. Prove Statements about Segments
f. Prove Angle Pair Relationships
g. Prove Theorems about Perpendicular Lines
h. Prove Triangles Congruent by SSS
i. Prove Triangles Congruent by SAS
j. Prove Triangles Congruent by ASA and AAS
III. Geometry: Relationships in Triangles and Quadrilaterals
a. Midsegment Theorem and Coordinate Proof
b. Use Perpendicular Bisectors
c. Use Angle Bisectors
d. Use Medians and Altitudes
e. Use Inequalities in a Triangle
f. Inequalities in Two Triangles and Indirect Proof
g. Find Angle measures in polygons
h. Use Properties of Parallelograms
i. Show that a Quadrilateral is a Parallelogram
j. Properties of Rhombuses, Rectangles and Squares
k. Use Properties of Trapezoids and Kites
l. Identify Special Quadrilaterals
Related documents